示例#1
0
def compute_baseline_histogram(files,
                               filename,
                               max_events=None,
                               pixel_id=None,
                               event_types=None,
                               disable_bar=False):
    if os.path.exists(filename) and len(files) == 0:
        baseline_histo = Histogram1D.load(filename)
        return baseline_histo
    else:
        if pixel_id is None:
            pixel_id = convert_pixel_args(None)
        n_pixels = len(pixel_id)
        events = calibration_event_stream(files,
                                          pixel_id=pixel_id,
                                          max_events=max_events,
                                          disable_bar=disable_bar)
        baseline_histo = Histogram1D(
            data_shape=(n_pixels, ),
            bin_edges=np.arange(0, 4096, 1 / 16),
        )

        for event in events:
            if event_types and event.event_type not in event_types:
                continue
            baseline_histo.fill(event.data.digicam_baseline.reshape(-1, 1))
        baseline_histo.save(filename)

        return baseline_histo
示例#2
0
def compute_max_histo(files, histo_filename, pixel_id, max_events,
                      integral_width, shift, baseline):
    n_pixels = len(pixel_id)

    if not os.path.exists(histo_filename):

        events = calibration_event_stream(files,
                                          pixel_id=pixel_id,
                                          max_events=max_events)
        # events = compute_baseline_with_min(events)
        events = fill_baseline(events, baseline)
        events = subtract_baseline(events)
        events = find_pulse_with_max(events)
        events = compute_charge(events, integral_width, shift)
        max_histo = Histogram1D(
            data_shape=(n_pixels, ),
            bin_edges=np.arange(-4095 * integral_width, 4095 * integral_width),
        )

        for event in events:
            max_histo.fill(event.data.reconstructed_charge)

        max_histo.save(histo_filename)

        return max_histo

    else:

        max_histo = Histogram1D.load(histo_filename)

        return max_histo
示例#3
0
def compute(files,
            pixel_id,
            max_events,
            pulse_indices,
            integral_width,
            shift,
            bin_width,
            output_path,
            charge_histo_filename='charge_histo.pk',
            amplitude_histo_filename='amplitude_histo.pk',
            save=True):

    amplitude_histo_path = os.path.join(output_path, amplitude_histo_filename)
    charge_histo_path = os.path.join(output_path, charge_histo_filename)

    if os.path.exists(charge_histo_path) and save:

        raise IOError('File {} already exists'.format(charge_histo_path))

    if os.path.exists(amplitude_histo_path) and save:

        raise IOError('File {} already exists'.format(amplitude_histo_path))

    n_pixels = len(pixel_id)

    events = calibration_event_stream(files,
                                      pixel_id=pixel_id,
                                      max_events=max_events)
    # events = compute_baseline_with_min(events)
    events = fill_digicam_baseline(events)
    events = subtract_baseline(events)
    # events = find_pulse_with_max(events)
    events = fill_pulse_indices(events, pulse_indices)
    events = compute_charge(events, integral_width, shift)
    events = compute_amplitude(events)

    charge_histo = Histogram1D(data_shape=(n_pixels, ),
                               bin_edges=np.arange(-4095 * integral_width,
                                                   4096 * integral_width,
                                                   bin_width),
                               axis_name='reconstructed charge '
                               '[LSB $\cdot$ ns]')

    amplitude_histo = Histogram1D(data_shape=(n_pixels, ),
                                  bin_edges=np.arange(-4095, 4096, 1),
                                  axis_name='reconstructed amplitude '
                                  '[LSB]')

    for event in events:
        charge_histo.fill(event.data.reconstructed_charge)
        amplitude_histo.fill(event.data.reconstructed_amplitude)

    if save:

        charge_histo.save(charge_histo_path)
        amplitude_histo.save(amplitude_histo_path)

    return amplitude_histo, charge_histo
示例#4
0
def compute_spe(files,
                histo_filename,
                pixel_id,
                baseline,
                max_events,
                integral_width,
                shift,
                pulse_finder_threshold,
                debug=False):
    if not os.path.exists(histo_filename):

        n_pixels = len(pixel_id)
        events = calibration_event_stream(files,
                                          max_events=max_events,
                                          pixel_id=pixel_id)

        events = fill_baseline(events, baseline)
        events = subtract_baseline(events)
        # events = find_pulse_1(events, 0.5, 20)
        # events = find_pulse_2(events, widths=[5, 6], threshold_sigma=2)
        events = find_pulse_fast(events, threshold=pulse_finder_threshold)
        # events = find_pulse_fast_2(events, threshold=pulse_finder_threshold,
        #                           min_dist=3)
        # events = find_pulse_correlate(events,
        #                               threshold=pulse_finder_threshold)
        # events = find_pulse_gaussian_filter(events,
        #                                    threshold=pulse_finder_threshold)

        # events = find_pulse_wavelets(events, widths=[4, 5, 6],
        #                             threshold_sigma=2)

        events = compute_charge(events,
                                integral_width=integral_width,
                                shift=shift)
        # events = compute_amplitude(events)
        # events = fit_template(events)

        # events = compute_full_waveform_charge(events)

        spe_histo = Histogram1D(data_shape=(n_pixels, ),
                                bin_edges=np.arange(-4095 * 50, 4095 * 50))

        for event in events:
            spe_histo.fill(event.data.reconstructed_charge)

        spe_histo.save(histo_filename)

        return spe_histo

    else:

        spe_histo = Histogram1D.load(histo_filename)

        return spe_histo
示例#5
0
def main(
    input_file,
    output_file,
    max_events=None,
    pixel_id=[...],
    integral_width=7,
    shift=0,
    pulse_finder_threshold=3.,
    use_digicam_baseline=False,
):

    baseline_span_ala_andrii = Histogram1D(data_shape=(1296, ),
                                           bin_edges=np.arange(0, 50, 1))

    random_charge = Histogram1D(data_shape=(1296, ),
                                bin_edges=np.arange(-50, 1000, 1))

    if not use_digicam_baseline:
        events = calibration_event_stream(input_file,
                                          pixel_id=pixel_id,
                                          max_events=max_events)
        raw_histo = build_raw_data_histogram(events)
        save_container(raw_histo, output_file, 'histo', 'raw_lsb')

        events = calibration_event_stream(input_file,
                                          max_events=max_events,
                                          pixel_id=pixel_id)

        events = fill_histogram(events, 0, raw_histo)
        events = fill_electronic_baseline(events)
        events = subtract_baseline(events)
    else:
        events = calibration_event_stream(input_file,
                                          max_events=max_events,
                                          pixel_id=pixel_id)
        events = subtract_digicam_baseline(events)

    events = fill_baseline_span_ala_andrii(events, baseline_span_ala_andrii)
    events = fill_random_charge(events, random_charge, 5)

    for _ in events:
        pass

    save_container(
        CalibrationHistogramContainer().from_histogram(
            baseline_span_ala_andrii), output_file, 'histo',
        'baseline_span_ala_andrii')
    save_container(
        CalibrationHistogramContainer().from_histogram(random_charge),
        output_file, 'histo', 'random_charge')
示例#6
0
def compute(files,
            max_events,
            pixel_id,
            output_path,
            n_samples,
            filename='timing_histo.pk',
            save=True,
            time_method=compute_time_from_max):

    filename = os.path.join(output_path, filename)

    if os.path.exists(filename) and save:
        raise IOError('The file {} already exists \n'.format(filename))

    n_pixels = len(pixel_id)
    events = calibration_event_stream(files,
                                      pixel_id=pixel_id,
                                      max_events=max_events)

    events = time_method(events)

    timing_histo = Histogram1D(data_shape=(n_pixels, ),
                               bin_edges=np.arange(0, n_samples * 4, 1),
                               axis_name='reconstructed time [ns]')

    for i, event in enumerate(events):

        timing_histo.fill(event.data.reconstructed_time)

    if save:

        timing_histo.save(filename)

    return timing_histo
示例#7
0
def compute(files,
            max_events,
            pixel_id,
            n_samples,
            ac_levels,
            filename='timing_histo.pk',
            save=True,
            time_method=compute_time_from_max):
    if os.path.exists(filename) and save:
        raise IOError('The file {} already exists \n'.format(filename))

    elif os.path.exists(filename):

        return Histogram1D.load(filename)

    n_pixels = len(pixel_id)
    n_ac_levels = len(ac_levels)
    n_files = len(files)

    if n_ac_levels != n_files:

        raise IOError('Number of files = {} does not match number of DAC level'
                      ' {}'.format(n_files, n_ac_levels))

    timing_histo = Histogram1D(
        data_shape=(
            n_ac_levels,
            n_pixels,
        ),
        bin_edges=np.arange(0, n_samples * 4, 1),
    )

    for i, file in tqdm(enumerate(files), total=n_ac_levels, desc='DAC level'):

        events = calibration_event_stream(file,
                                          pixel_id=pixel_id,
                                          max_events=max_events)

        events = time_method(events)

        for event in events:
            timing_histo.fill(event.data.reconstructed_time, indices=(i, ))

    if save:
        timing_histo.save(filename)

    return timing_histo
示例#8
0
def get_bad_pixels(calib_file=None,
                   nsigma_gain=5,
                   nsigma_elecnoise=5,
                   dark_histo=None,
                   nsigma_dark=8,
                   plot="none",
                   output=None):
    bad_pix = np.array([], dtype=int)
    if calib_file is not None:
        with open(calib_file) as file:
            calibration_parameters = yaml.load(file)
        gain = np.array(calibration_parameters['gain'])
        elecnoise = np.array(calibration_parameters['sigma_e'])
        nan_mask = np.logical_or(~np.isfinite(gain), ~np.isfinite(elecnoise))
        sigclip_gain = SigmaClip(sigma=nsigma_gain,
                                 iters=10,
                                 cenfunc=np.nanmean,
                                 stdfunc=np.nanstd)
        sigclip_elecnoise = SigmaClip(sigma=nsigma_elecnoise,
                                      iters=10,
                                      cenfunc=np.nanmean,
                                      stdfunc=np.nanstd)
        gain_mask = sigclip_gain(gain).mask
        elecnoise_mask = sigclip_elecnoise(elecnoise).mask
        bad_mask = np.logical_or(nan_mask,
                                 np.logical_or(gain_mask, elecnoise_mask))
        bad_pix = np.where(bad_mask)[0]
        if output is not None:
            calibration_parameters['bad_pixels'] = bad_pix
            with open(output, 'w') as file:
                yaml.dump(calibration_parameters, file)
        if plot is not None:
            fig, (ax_gain, ax_elecnoise) = plt.subplots(2, 1)
            gain_bins = np.linspace(np.nanmin(gain), np.nanmax(gain), 100)
            ax_gain.hist(gain[~bad_mask], gain_bins, color='b')
            ax_gain.hist(gain[bad_mask], gain_bins, color='r')
            ax_gain.set_xlabel('integral gain [LSB p.e.$^{-1}$]')
            elecnoise_bins = np.linspace(np.nanmin(elecnoise),
                                         np.nanmax(elecnoise), 100)
            ax_elecnoise.hist(elecnoise[~bad_mask], elecnoise_bins, color='b')
            ax_elecnoise.hist(elecnoise[bad_mask], elecnoise_bins, color='r')
            ax_elecnoise.set_xlabel('electronic noise [LSB]')
            plt.tight_layout()
            if plot != "show":
                plt.savefig(plot)
            else:
                plt.show()
            plt.close(fig)
    if dark_histo is not None:
        dark_histo = Histogram1D.load(dark_histo)
        baseline = dark_histo.mean(method='mid')
        sigclip_dark = SigmaClip(sigma=nsigma_dark,
                                 iters=10,
                                 cenfunc=np.nanmean,
                                 stdfunc=np.nanstd)
        dark_mask = sigclip_dark(baseline).mask
        bad_dark = np.where(dark_mask)[0]
        bad_pix = np.unique(np.concatenate((bad_pix, bad_dark)))
    return bad_pix
示例#9
0
def compute(files, max_events, filename):
    if os.path.exists(filename) and len(files) == 0:
        dt_histo = Histogram1D.load(filename)
        return dt_histo
    else:
        events = calibration_event_stream(files, max_events=max_events)
        dt_histo = Histogram1D(
            data_shape=(9, ),
            bin_edges=np.logspace(2, 9, 140),  # in ns
            # bin_edges=np.arange(150, 400, 4),  # in ns
        )
        previous_time = np.zeros(9) * np.nan
        for event in events:
            typ = event.event_type
            local_time = event.data.local_time  # in ns
            dt = local_time - previous_time[typ]  # in ns
            if np.isfinite(previous_time[typ]):
                dt_histo.fill(dt, indices=(event.event_type, ))
            previous_time[typ] = local_time
        dt_histo.save(filename)
        print(filename, 'saved')
        return dt_histo
示例#10
0
def build_raw_data_histogram(events):

    for count, event in tqdm(enumerate(events)):

        if count == 0:

            n_pixels = len(event.pixel_id)
            adc_histo = Histogram1D(data_shape=(n_pixels, ),
                                    bin_edges=np.arange(0, 4095, 1),
                                    axis_name='[LSB]')

        adc_histo.fill(event.data.adc_samples)

    return CalibrationHistogramContainer().from_histogram(adc_histo)
示例#11
0
def compute(files,
            filename,
            max_events=None,
            pixel_id=None,
            event_types=None,
            disable_bar=False,
            baseline_subtracted=False):
    if os.path.exists(filename) and len(files) == 0:
        raw_histo = Histogram1D.load(filename)
        return raw_histo
    else:
        if pixel_id is None:
            pixel_id = convert_pixel_args(None)
        n_pixels = len(pixel_id)
        events = calibration_event_stream(files,
                                          pixel_id=pixel_id,
                                          max_events=max_events,
                                          disable_bar=disable_bar)
        if baseline_subtracted:
            bin_edges = np.arange(-100, 4095, 1)
        else:
            bin_edges = np.arange(0, 4095, 1)
        raw_histo = Histogram1D(
            data_shape=(n_pixels, ),
            bin_edges=bin_edges,
        )

        for event in events:
            if event_types and event.event_type not in event_types:
                continue
            samples = event.data.adc_samples
            if baseline_subtracted:
                samples = samples - event.data.digicam_baseline[:, None]
            raw_histo.fill(samples)
        raw_histo.save(filename)

        return raw_histo
示例#12
0
def make_and_draw_charge_histo(data, bins, label):

    bin_edges = np.linspace(np.min(data), np.max(data) + 1, bins)
    histogram = Histogram1D(bin_edges=bin_edges)
    histogram.fill(data)

    # Histogram display
    fig, ax = plt.subplots()
    histogram.draw(axis=ax, label=label, legend=False)
    text = histogram._write_info(())
    anchored_text = AnchoredText(text, loc=5)
    ax.add_artist(anchored_text)

    # Formatting to use in the digicampipe fitting single mpe method
    histogram.data = histogram.data.reshape((1, 1, -1))
    histogram.overflow = histogram.overflow.reshape((1, -1))
    histogram.underflow = histogram.underflow.reshape((1, -1))

    return fig, ax, histogram
示例#13
0
def entry():
    args = docopt(__doc__)
    files = args['<INPUT>']

    max_events = convert_int(args['--max_events'])
    output_path = args['--output']

    if not os.path.exists(output_path):
        raise IOError('Path {} for output does not '
                      'exists \n'.format(output_path))

    pixel_id = convert_pixel_args(args['--pixel'])
    dc_levels = convert_list_int(args['--dc_levels'])
    n_pixels = len(pixel_id)
    n_dc_levels = len(dc_levels)

    results_filename = 'baseline_shift_results.npz'
    results_filename = os.path.join(output_path, results_filename)

    # fmpe_results_filename = args['--gain']
    # crosstalk = args['--crosstalk']
    # templates = args['--template']

    histo = Histogram1D(data_shape=(n_dc_levels, n_pixels),
                        bin_edges=np.arange(0, 4096))

    if args['--compute']:

        if n_dc_levels != len(files):
            raise ValueError('n_dc levels = {} != '
                             'n_files = {}'.format(n_dc_levels, len(files)))

        baseline_mean = np.zeros((n_dc_levels, n_pixels))
        baseline_std = np.zeros((n_dc_levels, n_pixels))

        for i, file in tqdm(enumerate(files),
                            desc='DC level',
                            total=len(files)):

            events = calibration_event_stream(file,
                                              pixel_id=pixel_id,
                                              max_events=max_events)

            for count, event in enumerate(events):
                baseline_mean[i] += event.data.digicam_baseline
                baseline_std[i] += event.data.digicam_baseline**2

                histo.fill(event.data.adc_samples, indices=(i, ))

            count += 1
            baseline_mean[i] = baseline_mean[i] / count
            baseline_std[i] = baseline_std[i] / count
            baseline_std[i] = baseline_std[i] - baseline_mean[i]**2
            baseline_std[i] = np.sqrt(baseline_std[i])

        histo.save(os.path.join(output_path, 'raw_histo.pk'))
        np.savez(results_filename,
                 baseline_mean=baseline_mean,
                 baseline_std=baseline_std,
                 dc_levels=dc_levels)

    if args['--fit']:
        data = dict(np.load(results_filename))
        baseline_mean = data['baseline_mean']
        baseline_std = data['baseline_std']
        dc_levels = data['dc_levels']

        gain = 5
        template_area = 18
        crosstalk = 0.08
        bias_resistance = 10 * 1E3
        cell_capacitance = 50 * 1E-15

        baseline_shift = baseline_mean - baseline_mean[0]
        nsb_rate = gain * template_area / (baseline_shift * (1 - crosstalk))
        nsb_rate = nsb_rate - cell_capacitance * bias_resistance
        nsb_rate = 1 / nsb_rate

        np.savez(results_filename,
                 baseline_mean=baseline_mean,
                 baseline_std=baseline_std,
                 dc_levels=dc_levels,
                 nsb_rate=nsb_rate,
                 baseline_shift=baseline_shift)

    if args['--save_figures']:
        pass

    if args['--display']:
        data = dict(np.load(results_filename))
        histo = Histogram1D.load(os.path.join(output_path, 'raw_histo.pk'))
        baseline_mean = histo.mean()
        baseline_std = histo.std()
        nsb_rate = data['nsb_rate']

        print(baseline_mean.shape)

        histo.draw((0, 1))
        histo.draw((49, 1))

        plt.figure()
        plt.plot(dc_levels, baseline_mean)
        plt.xlabel('DC DAC level')
        plt.ylabel('Baseline mean [LSB]')

        plt.figure()
        plt.plot(dc_levels, baseline_std)
        plt.xlabel('DC DAC level')
        plt.ylabel('Baseline std [LSB]')

        plt.figure()
        plt.plot(nsb_rate, baseline_std)
        plt.xlabel('$f_{NSB}$ [GHz]')
        plt.ylabel('Baseline std [LSB]')

        plt.figure()
        plt.plot(baseline_mean, baseline_std)
        plt.xlabel('Baseline mean [LSB]')
        plt.ylabel('Baseline std [LSB]')

        plt.figure()
        plt.semilogy(dc_levels, nsb_rate)
        plt.xlabel('DC DAC level')
        plt.ylabel('$f_{NSB}$ [GHz]')
        plt.show()

        pass

    return
示例#14
0
def entry():

    args = docopt(__doc__)
    files = args['INPUT']
    debug = args['--debug']

    max_events = convert_max_events_args(args['--max_events'])
    output_path = args['OUTPUT']

    if not os.path.exists(output_path):

        raise IOError('Path for output does not exists \n')

    pixel_id = convert_pixel_args(args['--pixel'])
    integral_width = int(args['--integral_width'])
    shift = int(args['--shift'])
    bin_width = int(args['--bin_width'])
    n_samples = int(args['--n_samples'])  # TODO access this in a better way !
    ac_levels = convert_dac_level(args['--ac_levels'])

    n_pixels = len(pixel_id)
    n_ac_levels = len(ac_levels)

    if n_ac_levels != len(files):

        raise ValueError('n_ac levels = {} != '
                         'n_files = {}'.format(n_ac_levels, len(files)))

    if args['--compute']:

        amplitude = np.zeros((n_pixels, n_ac_levels))
        charge = np.zeros((n_pixels, n_ac_levels))
        time = np.zeros((n_pixels, n_ac_levels))

        for i, (file, ac_level) in tqdm(enumerate(zip(files, ac_levels)),
                                        total=n_ac_levels,
                                        desc='DAC level',
                                        leave=False):

            timing_histo_filename = 'timing_histo_ac_level_{}.pk' \
                                    ''.format(ac_level)
            charge_histo_filename = 'charge_histo_ac_level_{}.pk' \
                                    ''.format(ac_level)
            amplitude_histo_filename = 'amplitude_histo_ac_level_{}.pk' \
                                       ''.format(ac_level)

            timing_histo = timing.compute(file,
                                          max_events,
                                          pixel_id,
                                          output_path,
                                          n_samples,
                                          filename=timing_histo_filename,
                                          save=False)
            time[:, i] = timing_histo.mean()
            pulse_indices = time[:, i] // 4

            amplitude_histo, charge_histo = compute(
                file,
                pixel_id,
                max_events,
                pulse_indices,
                integral_width,
                shift,
                bin_width,
                output_path,
                charge_histo_filename=charge_histo_filename,
                amplitude_histo_filename=amplitude_histo_filename,
                save=False)

            amplitude[:, i] = amplitude_histo.mean()
            charge[:, i] = charge_histo.mean()

        plt.figure()
        plt.plot(amplitude[0], charge[0])
        plt.show()

        np.savez(os.path.join(output_path, 'mpe_results'),
                 amplitude=amplitude,
                 charge=charge,
                 time=time,
                 pixel_id=pixel_id,
                 ac_levels=ac_levels)

    if args['--fit']:

        pass

    if args['--save_figures']:

        pass

    if args['--display']:

        amplitude_histo_path = os.path.join(output_path, 'amplitude_histo.pk')
        charge_histo_path = os.path.join(output_path, 'charge_histo.pk')

        charge_histo = Histogram1D.load(charge_histo_path)
        charge_histo.draw(index=(0, ), log=False, legend=False)

        amplitude_histo = Histogram1D.load(amplitude_histo_path)
        amplitude_histo.draw(index=(0, ), log=False, legend=False)
        plt.show()

        pass

    return
示例#15
0
def entry():

    args = docopt(__doc__)
    input_dir = convert_text(args['--input_dir'])
    output_dir = convert_text(args['--output_dir'])
    channel = convert_int(args['--channel'])
    initial_values_dir = convert_text(args['--initial_values_dir'])
    debug = args['--debug']

    if args['digicampipe']:

        file_list = read.give_list_of_file(input_dir)
        yaml_list = read.give_list_of_file(initial_values_dir)

        file_list.sort()
        yaml_list.sort()

        print(file_list)
        print(yaml_list)

        fit_parameters = {}

        for k, f in enumerate(file_list):

            level = 'LVL_{}'.format(k)
            bias_voltage = float(re.findall('\d+\.\d+', f)[0])

            print('Fitting charge')
            f = input_dir + '/' + f
            i_val = initial_values_dir + '/' + yaml_list[k]
            print('charge file :', f)
            print('initialization file :', i_val)

            with open(i_val) as file:
                init_parameters = yaml.load(file, Loader=yaml.FullLoader)
                print('Initial Fitting parameters', init_parameters)

            # We need this new format to make work our fit function, it was built that way
            temp_dict = {}
            for key, value in init_parameters.items():
                temp_dict[key] = np.array([[value]])
            init_parameters = temp_dict
            del temp_dict

            data = fit_single_mpe(f, ac_levels=[0], pixel_ids=[0], init_params=init_parameters, debug=True)

            temp_data = {}
            for key, value in data.items():
                if key is not 'pixel_ids':
                    temp_data[key] = (value[0][0]).tolist()

            temp_data['bias_voltage'] = bias_voltage
            fit_parameters[level] = temp_data

        print('fit_parameter', fit_parameters)
        fit_parameters_file = '{}/fit_parameters.yml'.format(output_dir)

        with open(fit_parameters_file, 'w') as file:
            yaml.dump(fit_parameters, file)
        print('END of the digicampipe fitter')

    if args['multigauss']:

        file_list = read.give_list_of_file(input_dir)
        file_list.sort()
        print(file_list)

        # Creating the dictionary
        fit_parameters = {}

        for k, f in enumerate(file_list):

            f = os.path.join(input_dir, f)
            bias_voltage = float(re.findall('\d+\.\d+', f)[0])

            charge_histogram = Histogram1D.load(f)
            y_data = charge_histogram.data
            x_data = charge_histogram.bin_centers

            if debug:
                pdf_debug_histo_to_plot = PdfPages(os.path.join(output_dir, 'ch{}_debug_histo_to_plot_V{}.pdf'.format(bias_voltage, channel)))
                fig, (ax1, ax2) = plt.subplots(2, 1)
                charge_histogram.draw(axis=ax1, legend=False, label='histogram data')
                ax1.plot(x_data, y_data, '|', label='plotting of data', mec='tab:orange', mfc='tab:orange',
                         markersize=12)
                ax1.set_xlabel('[LSB]')
                ax1.legend()

                ax2.plot(y_data, label='plotting of data', marker='|', color='tab:blue', mfc='tab:orange',
                         mec='tab:orange', markersize=12)
                ax2.set_ylabel('count')
                ax2.set_xlabel('Index')
                ax2.legend()
                pdf_debug_histo_to_plot.savefig(fig)
                pdf_debug_histo_to_plot.close()
                plt.close(fig)

            # Automatizing the initial values guess
            # Find peaks: Gain
            # First approx, it will set us to the separation of to peaks
            idx_peaks, _ = find_peaks(y_data, height=20)
            delta_idx_peak = np.diff(idx_peaks)
            idx_peak_bis, _ = find_peaks(y_data, distance=delta_idx_peak[0], height=40)
            print('idx of peaks found', idx_peak_bis)
            print('Peaks found : ', len(idx_peak_bis))

            if debug:
                pdf_debug_peaks_found = PdfPages(os.path.join(output_dir, 'ch_{}_debug_peaks_found_V{}.pdf'.format(bias_voltage, channel)))
                fig, (ax1, ax2) = plt.subplots(2, 1)

                ax1.plot(y_data, color='tab:blue', label='Integral charge')
                ax1.plot(idx_peaks, y_data[idx_peaks], color='tab:green',
                         label='Peaks found : 1st round', marker='v', linestyle='None')
                ax1.set_xlabel('Index')
                ax1.set_ylabel('count')
                ax1.legend()

                ax2.plot(y_data, color='tab:blue', label='Integral charge')
                ax2.plot(idx_peak_bis, y_data[idx_peak_bis], color='tab:red',
                         label='Peaks found : 2st round', marker='v', linestyle='None')
                ax2.set_xlabel('Index')
                ax2.set_ylabel('count')
                ax2.legend()
                pdf_debug_peaks_found.savefig(fig)
                pdf_debug_peaks_found.close()
                plt.close(fig)

            initial_values = []
            # We can do better : fitting the first peak with a gaussian to extract initial parameters
            # Defining the first peak (peak zeros)
            # safe_zone expansion
            safe_zone = 3
            idx_valley = np.argmin(y_data[idx_peak_bis[0]: idx_peak_bis[1]])
            idx_valley += idx_peak_bis[0]

            interval = [0, idx_valley]
            y_peak = y_data[interval[0]: interval[1] + safe_zone]
            x_peak = np.arange(len(y_peak))

            pdf_fit_peak = PdfPages(os.path.join(output_dir, 'ch{}_fit_peak_V{}.pdf'.format(bias_voltage, channel)))

            popt, pcov, fig = fit_gaussian_peak(x_peak, y_peak)
            pdf_fit_peak.savefig(fig)
            plt.show()

            initial_values.append(popt)

            # Defining the second peak
            # idx_valley is key since new fit will be shift by the quantity idx_valley (important for plot)
            interval = [idx_valley, idx_valley + delta_idx_peak[0]]
            y_peak = y_data[interval[0]: interval[-1] + safe_zone]
            x_peak = np.arange(len(y_peak))

            popt, pcov, fig = fit_gaussian_peak(x_peak, y_peak, display_offset=interval[0])
            popt[1] += interval[0]
            pdf_fit_peak.savefig(fig)
            plt.show()

            initial_values.append(popt)

            # Defining the third peak
            # idx_valley is key since new fit will be shift by the quantity idx_valley (important for plot)
            interval = [interval[0] + delta_idx_peak[0], interval[0] + 2*delta_idx_peak[0]]
            y_peak = y_data[interval[0]: interval[-1] + safe_zone]
            x_peak = np.arange(len(y_peak))

            popt, pcov, fig = fit_gaussian_peak(x_peak, y_peak, display_offset=interval[0])
            popt[1] += interval[0]
            pdf_fit_peak.savefig(fig)
            plt.show()

            initial_values.append(popt)

            pdf_fit_peak.close()

            print('Initial values gotten')
            initial_values = np.array(initial_values)

            amplitude = initial_values.T[0]
            x_first_peak = initial_values.T[1][0]
            gain = np.diff(initial_values.T[1])[0]
            sigma_e = initial_values.T[2][0]
            sigma_s = np.sqrt(initial_values.T[2][1]**2 - sigma_e**2)

            # Fitting the multi-gauss function of 3 peaks
            x_data = np.arange(len(y_data))
            popt, pcov = curve_fit(multi_gauss, x_data, y_data, p0=[amplitude[0], amplitude[1], amplitude[2],
                                                                    x_first_peak, gain, sigma_e, sigma_s])

            var = popt
            var_err = np.sqrt(np.diagonal(pcov))
            text = write_multi_gaus_info(var, var_err)

            x_fit = np.linspace(x_data[0], x_data[-1], 1000)

            fig = plt.figure()
            gs = gridspec.GridSpec(2, 1, height_ratios=[3, 1])
            ax0 = fig.add_subplot(gs[0])
            ax0.plot(x_data, y_data, 'b-', label='data')
            ax0.plot(x_fit, multi_gauss(x_fit, *popt), 'g--', label='fit')
            ax0.plot(x_data, multi_gauss(x_data, amplitude[0], amplitude[1], amplitude[2], x_first_peak, gain, sigma_e, sigma_s), 'r*', label='Initial values', ms=2)
            ax0.set_ylabel('count')
            ax0.legend(loc=9)

            text_formula = 'y =  $ \\sum_{k=0}^{N=2} A_k\\frac{1}{\sigma_k \sqrt{2 \pi}} e^{-(\\frac{x-\mu_k}{\sigma_k})}$\n' \
                           ' $\sigma_k^2 = \sigma_e^2 + k\sigma_s^2$'
            anchored_text = AnchoredText(text, loc=1, frameon=False)
            anchored_formula = AnchoredText(text_formula, loc=4, frameon=False)
            ax0.add_artist(anchored_text)
            ax0.add_artist(anchored_formula)

            ax1 = fig.add_subplot(gs[1], sharex=ax0)
            ax1.plot(x_data, (y_data - multi_gauss(x_data, *popt)) / y_data, marker='o', ms=4, linestyle='None', color='black')
            ax1.axhline(0, color='gray', linestyle='dashed')
            ax1.set_ylabel('Residual')
            ax1.set_xlabel('Index')
            print('Multi-Gauss fitted')

            pdf_fit_multigauss = PdfPages(os.path.join(output_dir, 'ch{}_fit_multigauss_V{}.pdf'.format(bias_voltage, channel)))
            pdf_fit_multigauss.savefig(fig)
            pdf_fit_multigauss.close()
            plt.show()
            plt.close(fig)

            # Creating the sub-dictionary
            level = 'LVL_{}'.format(k)

            temp_dict = {}
            temp_dict['bias_voltage'] = bias_voltage
            temp_dict['amplitude'] = np.sum(var[0:2])
            temp_dict['mu_peak'] = var[3]
            temp_dict['gain'] = var[4]
            temp_dict['sigma_e'] = var[5]
            temp_dict['sigma_s'] = var[6]

            temp_dict['error_amplitude'] = np.sqrt(np.sum(var_err[0:2]**2))
            temp_dict['error_mu_peak'] = var_err[3]
            temp_dict['error_gain'] = var_err[4]
            temp_dict['error_sigma_e'] = var_err[5]
            temp_dict['error_sigma_s'] = var_err[6]

            fit_parameters[level] = temp_dict
            del temp_dict

            print('Multi-Gauss fitter for voltage {} V done '.format(bias_voltage))

        if debug:
            print('fit_parameter', fit_parameters)
        fit_parameters_file = os.path.join(output_dir, 'fit_parameters.yml')

        with open(fit_parameters_file, 'w') as file:
            yaml.dump(fit_parameters, file)

        print('Fitted parameters saved at : {}'.format(fit_parameters_file))
        print('END of the Multi-Gauss fitter')
示例#16
0
def compute(files,
            pixel_id,
            max_events,
            pulse_indices,
            integral_width,
            shift,
            bin_width,
            charge_histo_filename='charge_histo.pk',
            amplitude_histo_filename='amplitude_histo.pk',
            save=True):
    if os.path.exists(charge_histo_filename) and save:

        raise IOError('File {} already exists'.format(charge_histo_filename))

    elif os.path.exists(charge_histo_filename):

        charge_histo = Histogram1D.load(charge_histo_filename)

    if os.path.exists(amplitude_histo_filename) and save:

        raise IOError(
            'File {} already exists'.format(amplitude_histo_filename))

    elif os.path.exists(amplitude_histo_filename):

        amplitude_histo = Histogram1D.load(amplitude_histo_filename)

    if (not os.path.exists(amplitude_histo_filename)) or \
            (not os.path.exists(charge_histo_filename)):

        n_pixels = len(pixel_id)

        events = calibration_event_stream(files,
                                          pixel_id=pixel_id,
                                          max_events=max_events)
        # events = compute_baseline_with_min(events)
        events = fill_digicam_baseline(events)
        events = subtract_baseline(events)
        # events = find_pulse_with_max(events)
        events = fill_pulse_indices(events, pulse_indices)
        events = compute_charge(events, integral_width, shift)
        events = compute_amplitude(events)

        charge_histo = Histogram1D(data_shape=(n_pixels, ),
                                   bin_edges=np.arange(-40 * integral_width,
                                                       4096 * integral_width,
                                                       bin_width))

        amplitude_histo = Histogram1D(data_shape=(n_pixels, ),
                                      bin_edges=np.arange(-40, 4096, 1))

        for event in events:

            charge_histo.fill(event.data.reconstructed_charge)
            amplitude_histo.fill(event.data.reconstructed_amplitude)

        if save:
            charge_histo.save(charge_histo_filename)
            amplitude_histo.save(amplitude_histo_filename)

    return amplitude_histo, charge_histo
示例#17
0
def entry():
    args = docopt(__doc__)

    files = args['<INPUT>']
    debug = args['--debug']

    max_events = convert_int(args['--max_events'])

    raw_histo_filename = args['--raw_histo_filename']
    charge_histo_filename = args['--charge_histo_filename']
    max_histo_filename = args['--max_histo_filename']
    results_filename = args['--output']

    pixel_id = convert_pixel_args(args['--pixel'])
    n_pixels = len(pixel_id)

    integral_width = int(args['--integral_width'])
    shift = int(args['--shift'])
    pulse_finder_threshold = float(args['--pulse_finder_threshold'])

    n_samples = int(args['--n_samples'])  # TODO access this in a better way !
    estimated_gain = 20
    ncall = int(args['--ncall'])

    if args['--compute']:
        raw_histo = raw.compute(files,
                                max_events=max_events,
                                pixel_id=pixel_id,
                                filename=raw_histo_filename)
        baseline = raw_histo.mode()

        compute_max_histo(files, max_histo_filename, pixel_id, max_events,
                          integral_width, shift, baseline)

        compute_spe(files,
                    charge_histo_filename,
                    pixel_id,
                    baseline,
                    max_events,
                    integral_width,
                    shift,
                    pulse_finder_threshold,
                    debug=debug)

    if args['--fit']:

        spe_histo = Histogram1D.load(charge_histo_filename)
        max_histo = Histogram1D.load(max_histo_filename)

        dark_count_rate = np.zeros(n_pixels) * np.nan
        electronic_noise = np.zeros(n_pixels) * np.nan
        crosstalk = np.zeros(n_pixels) * np.nan
        gain = np.zeros(n_pixels) * np.nan

        for i, pixel in tqdm(enumerate(pixel_id), total=n_pixels,
                             desc='Pixel'):
            histo = max_histo[i]
            fitter = MaxHistoFitter(histo, estimated_gain, throw_nan=True)

            try:
                fitter.fit(ncall=100)
                fitter.fit(ncall=ncall)

                n_entries = histo.data.sum()
                number_of_zeros = fitter.parameters['a_0']
                window_length = 4 * n_samples
                rate = compute_dark_rate(number_of_zeros, n_entries,
                                         window_length)
                electronic_noise[i] = fitter.parameters['sigma_e']

                dark_count_rate[i] = rate
                if debug:
                    fitter.draw()
                    fitter.draw_init(x_label='[LSB]')
                    fitter.draw_fit(x_label='[LSB]')
                    plt.show()

            except Exception as e:

                print('Could not compute dark count rate'
                      ' in pixel {}'.format(pixel))
                print(e)

        np.savez(results_filename,
                 dcr=dark_count_rate,
                 sigma_e=electronic_noise,
                 pixel_id=pixel_id)

        for i, pixel in tqdm(enumerate(pixel_id), total=n_pixels,
                             desc='Pixel'):

            histo = spe_histo[i]
            fitter = SPEFitter(histo, estimated_gain, throw_nan=True)

            try:

                fitter.fit(ncall=100)
                fitter.fit(ncall=ncall)

                params = fitter.parameters
                n_entries = params['a_1']
                n_entries += params['a_2']
                n_entries += params['a_3']
                n_entries += params['a_4']
                crosstalk[i] = (n_entries - params['a_1']) / n_entries
                gain[i] = params['gain']

                if debug:
                    fitter.draw()
                    fitter.draw_init(x_label='[LSB]')
                    fitter.draw_fit(x_label='[LSB]')
                    plt.show()

            except Exception as e:

                print('Could not compute gain and crosstalk'
                      ' in pixel {}'.format(pixel))
                print(e)

        data = dict(np.load(results_filename))
        data['crosstalk'] = crosstalk
        data['gain'] = gain
        np.savez(results_filename, **data)

    save_figure = convert_text(args['--save_figures'])
    if save_figure is not None:
        output_path = save_figure
        spe_histo = Histogram1D.load(charge_histo_filename)
        spe_amplitude = Histogram1D.load(charge_histo_filename)
        raw_histo = Histogram1D.load(raw_histo_filename)
        max_histo = Histogram1D.load(max_histo_filename)

        figure_directory = output_path + 'figures/'

        if not os.path.exists(figure_directory):
            os.makedirs(figure_directory)

        histograms = [spe_histo, spe_amplitude, raw_histo, max_histo]
        names = [
            'histogram_charge/', 'histogram_amplitude/', 'histogram_raw/',
            'histo_max/'
        ]

        for i, histo in enumerate(histograms):

            figure = plt.figure()
            histogram_figure_directory = figure_directory + names[i]

            if not os.path.exists(histogram_figure_directory):
                os.makedirs(histogram_figure_directory)

            for j, pixel in enumerate(pixel_id):
                axis = figure.add_subplot(111)
                figure_path = histogram_figure_directory + 'pixel_{}'. \
                    format(pixel)

                try:

                    histo.draw(index=(j, ), axis=axis, log=True, legend=False)
                    figure.savefig(figure_path)

                except Exception as e:

                    print('Could not save pixel {} to : {} \n'.format(
                        pixel, figure_path))
                    print(e)

                axis.remove()

    if args['--display']:

        spe_histo = Histogram1D.load(charge_histo_filename)
        raw_histo = Histogram1D.load(
            os.path.join(output_path, raw_histo_filename))
        max_histo = Histogram1D.load(max_histo_filename)

        spe_histo.draw(index=(0, ), log=True, legend=False)
        raw_histo.draw(index=(0, ), log=True, legend=False)
        max_histo.draw(index=(0, ), log=True, legend=False)

        try:

            data = np.load(results_filename)
            dark_count_rate = data['dcr']
            electronic_noise = data['sigma_e']
            crosstalk = data['crosstalk']
            gain = data['gain']

        except IOError as e:

            print(e)
            print('Could not find the analysis files !')

        plt.figure()
        plt.hist(dark_count_rate[np.isfinite(dark_count_rate)], bins='auto')
        plt.xlabel('dark count rate [GHz]')
        plt.legend(loc='best')

        plt.figure()
        plt.hist(crosstalk[np.isfinite(crosstalk)], bins='auto')
        plt.xlabel('Crosstalk []')
        plt.legend(loc='best')

        plt.figure()
        plt.hist(gain[np.isfinite(gain)], bins='auto')
        plt.xlabel('Gain [LSB/p.e.]')
        plt.legend(loc='best')

        plt.figure()
        plt.hist(electronic_noise[np.isfinite(electronic_noise)], bins='auto')
        plt.xlabel('$\sigma_e$ [LSB]')
        plt.legend(loc='best')

        plt.show()

    return
示例#18
0
def entry():
    args = docopt(__doc__)
    files = args['<INPUT>']

    max_events = convert_int(args['--max_events'])
    pixel_id = convert_pixel_args(args['--pixel'])
    n_samples = int(args['--n_samples'])
    timing_histo_filename = args['--timing_histo_filename']
    ac_levels = convert_list_int(args['--ac_levels'])

    output_path = os.path.dirname(timing_histo_filename)
    results_filename = os.path.join(output_path, 'timing.npz')

    if not os.path.exists(output_path):
        raise IOError('Path for output does not exists \n')

    if args['--compute']:
        compute(files,
                max_events,
                pixel_id,
                n_samples,
                ac_levels,
                timing_histo_filename,
                save=True,
                time_method=compute_time_from_max)
        # or try to use compute_time_from_leading_edge)

    if args['--fit']:
        timing_histo = Histogram1D.load(timing_histo_filename)

        timing = timing_histo.mode()
        timing = mode(timing, axis=0)[0][0]

        np.savez(results_filename, time=timing)

    if args['--save_figures']:

        raw_histo = Histogram1D.load(timing_histo_filename)

        path = os.path.join(output_path, 'figures/', 'timing_histo/')

        if not os.path.exists(path):
            os.makedirs(path)

        figure = plt.figure()

        for i, pixel in tqdm(enumerate(pixel_id), total=len(pixel_id)):
            axis = figure.add_subplot(111)
            figure_path = path + 'pixel_{}.pdf'

            try:

                raw_histo.draw(index=(i, ), axis=axis, log=True, legend=False)
                figure.savefig(figure_path.format(pixel))

            except Exception as e:

                print('Could not save pixel {} to : {} \n'.format(
                    pixel, figure_path))
                print(e)

            axis.remove()

    if args['--display']:

        timing_histo = Histogram1D.load(timing_histo_filename)
        timing_histo.draw(index=(
            len(ac_levels) - 1,
            0,
        ),
                          log=True,
                          legend=False)

        pulse_time = timing_histo.mode()

        plt.figure()
        plt.plot(ac_levels, pulse_time)
        plt.xlabel('DAC level')
        plt.ylabel('Reconstructed pulse time [ns]')

        pulse_time = np.load(results_filename)['time']

        plot_array_camera(pulse_time,
                          label='time of pulse [ns]',
                          allow_pick=True)

        plot_parameter(pulse_time, 'time of pulse', '[ns]', bins=20)

        plt.show()

    return
示例#19
0
def entry():
    args = docopt(__doc__)
    files = args['<INPUT>']
    debug = args['--debug']

    max_events = convert_int(args['--max_events'])
    results_filename = args['--fit_output']
    dir_output = os.path.dirname(results_filename)

    if not os.path.exists(dir_output):
        raise IOError('Path {} for output '
                      'does not exists \n'.format(dir_output))

    pixel_ids = convert_pixel_args(args['--pixel'])
    integral_width = int(args['--integral_width'])
    shift = int(args['--shift'])
    bin_width = int(args['--bin_width'])
    ncall = int(args['--ncall'])
    ac_levels = convert_list_int(args['--ac_levels'])
    n_pixels = len(pixel_ids)
    n_ac_levels = len(ac_levels)
    adc_min = int(args['--adc_min'])
    adc_max = int(args['--adc_max'])

    timing_filename = args['--timing']
    timing = np.load(timing_filename)['time']

    charge_histo_filename = args['--compute_output']
    fmpe_results_filename = args['--gain']

    if args['--compute']:

        if n_ac_levels != len(files):
            raise ValueError('n_ac_levels = {} != '
                             'n_files = {}'.format(n_ac_levels, len(files)))

        time = np.zeros((n_ac_levels, n_pixels))

        charge_histo = Histogram1D(bin_edges=np.arange(
            adc_min * integral_width, adc_max * integral_width, bin_width),
                                   data_shape=(
                                       n_ac_levels,
                                       n_pixels,
                                   ))

        if os.path.exists(charge_histo_filename):
            raise IOError(
                'File {} already exists'.format(charge_histo_filename))

        for i, (file, ac_level) in tqdm(enumerate(zip(files, ac_levels)),
                                        total=n_ac_levels,
                                        desc='DAC level',
                                        leave=False):

            time[i] = timing[pixel_ids]
            pulse_indices = time[i] // 4

            events = calibration_event_stream(file,
                                              pixel_id=pixel_ids,
                                              max_events=max_events)
            # events = compute_baseline_with_min(events)
            events = fill_digicam_baseline(events)
            events = subtract_baseline(events)
            # events = find_pulse_with_max(events)
            events = fill_pulse_indices(events, pulse_indices)
            events = compute_charge(events, integral_width, shift)
            events = compute_amplitude(events)

            for event in events:
                charge_histo.fill(event.data.reconstructed_charge, indices=i)

        charge_histo.save(charge_histo_filename, )

    if args['--fit']:

        input_parameters = Table.read(fmpe_results_filename, format='fits')
        input_parameters = input_parameters.to_pandas()

        gain = np.zeros((n_ac_levels, n_pixels)) * np.nan
        sigma_e = np.zeros((n_ac_levels, n_pixels)) * np.nan
        sigma_s = np.zeros((n_ac_levels, n_pixels)) * np.nan
        baseline = np.zeros((n_ac_levels, n_pixels)) * np.nan
        mu = np.zeros((n_ac_levels, n_pixels)) * np.nan
        mu_xt = np.zeros((n_ac_levels, n_pixels)) * np.nan
        amplitude = np.zeros((n_ac_levels, n_pixels)) * np.nan

        gain_error = np.zeros((n_ac_levels, n_pixels)) * np.nan
        sigma_e_error = np.zeros((n_ac_levels, n_pixels)) * np.nan
        sigma_s_error = np.zeros((n_ac_levels, n_pixels)) * np.nan
        baseline_error = np.zeros((n_ac_levels, n_pixels)) * np.nan
        mu_error = np.zeros((n_ac_levels, n_pixels)) * np.nan
        mu_xt_error = np.zeros((n_ac_levels, n_pixels)) * np.nan
        amplitude_error = np.zeros((n_ac_levels, n_pixels)) * np.nan

        mean = np.zeros((n_ac_levels, n_pixels)) * np.nan
        std = np.zeros((n_ac_levels, n_pixels)) * np.nan

        chi_2 = np.zeros((n_ac_levels, n_pixels)) * np.nan
        ndf = np.zeros((n_ac_levels, n_pixels)) * np.nan

        ac_limit = [np.inf] * n_pixels

        charge_histo = Histogram1D.load(charge_histo_filename)

        for i, ac_level in tqdm(enumerate(ac_levels),
                                total=n_ac_levels,
                                desc='DAC level',
                                leave=False):

            for j, pixel_id in tqdm(enumerate(pixel_ids),
                                    total=n_pixels,
                                    desc='Pixel',
                                    leave=False):

                histo = charge_histo[i, pixel_id]

                mean[i, j] = histo.mean()
                std[i, j] = histo.std()

                if histo.overflow > 0 or histo.data.sum() == 0:
                    continue

                fit_params_names = describe(mpe_distribution_general)
                options = {'fix_n_peaks': True}
                fixed_params = {}

                for param in fit_params_names:

                    if param in input_parameters.keys():
                        name = 'fix_' + param

                        options[name] = True
                        fixed_params[param] = input_parameters[param][pixel_id]

                if i > 0:

                    if mu[i - 1, j] > 5:
                        ac_limit[j] = min(i, ac_limit[j])
                        ac_limit[j] = int(ac_limit[j])

                        weights_fit = chi_2[:ac_limit[j], j]
                        weights_fit = weights_fit / ndf[:ac_limit[j], j]

                        options['fix_mu_xt'] = True

                        temp = mu_xt[:ac_limit[j], j] * weights_fit
                        temp = np.nansum(temp)
                        temp = temp / np.nansum(weights_fit)
                        fixed_params['mu_xt'] = temp

                try:

                    fitter = MPEFitter(histogram=histo,
                                       cost='MLE',
                                       pedantic=0,
                                       print_level=0,
                                       throw_nan=True,
                                       fixed_params=fixed_params,
                                       **options)

                    fitter.fit(ncall=ncall)

                    if debug:
                        x_label = '[LSB]'
                        label = 'Pixel {}'.format(pixel_id)
                        fitter.draw(legend=False, x_label=x_label, label=label)
                        fitter.draw_init(legend=False,
                                         x_label=x_label,
                                         label=label)
                        fitter.draw_fit(legend=False,
                                        x_label=x_label,
                                        label=label)
                        plt.show()

                    param = fitter.parameters
                    param_err = fitter.errors
                    gain[i, j] = param['gain']
                    sigma_e[i, j] = param['sigma_e']
                    sigma_s[i, j] = param['sigma_s']
                    baseline[i, j] = param['baseline']
                    mu[i, j] = param['mu']
                    mu_xt[i, j] = param['mu_xt']
                    amplitude[i, j] = param['amplitude']

                    gain_error[i, j] = param_err['gain']
                    sigma_e_error[i, j] = param_err['sigma_e']
                    sigma_s_error[i, j] = param_err['sigma_s']
                    baseline_error[i, j] = param_err['baseline']
                    mu_error[i, j] = param_err['mu']
                    mu_xt_error[i, j] = param_err['mu_xt']
                    amplitude_error[i, j] = param_err['amplitude']

                    chi_2[i, j] = fitter.fit_test() * fitter.ndf
                    ndf[i, j] = fitter.ndf

                except Exception as e:

                    print(e)
                    print('Could not fit pixel {} for DAC level {}'.format(
                        pixel_id, ac_level))

        np.savez(
            results_filename,
            gain=gain,
            sigma_e=sigma_e,
            sigma_s=sigma_s,
            baseline=baseline,
            mu=mu,
            mu_xt=mu_xt,
            gain_error=gain_error,
            sigma_e_error=sigma_e_error,
            sigma_s_error=sigma_s_error,
            baseline_error=baseline_error,
            mu_error=mu_error,
            mu_xt_error=mu_xt_error,
            chi_2=chi_2,
            ndf=ndf,
            pixel_ids=pixel_ids,
            ac_levels=ac_levels,
            amplitude=amplitude,
            amplitude_error=amplitude_error,
            mean=mean,
            std=std,
        )

    if args['--save_figures']:

        pass

    if args['--display']:

        charge_histo = Histogram1D.load(charge_histo_filename)
        charge_histo.draw(index=(0, 0), log=False, legend=False)

        pass

    return
示例#20
0
import numpy as np
import matplotlib.pyplot as plt
import peakutils as peakutils
from scipy.optimize import curve_fit
from scipy.special import factorial
from matplotlib.offsetbox import AnchoredText
from matplotlib.backends.backend_pdf import PdfPages

from docopt import docopt
from digicampipe.utils.docopt import convert_int, convert_text
from histogram.histogram import Histogram1D

channel = 3

file = '/Users/lonewolf/Desktop/scifi/integral_charge/integral_charge_ch{}.fits'.format(channel)
charge_histogram = Histogram1D.load(file)
y_data = charge_histogram.data
x_data = charge_histogram.bin_centers

y = y_data[:1300].astype(float)
x = np.arange(len(y))

# 1st stage : Find estimates of the peaks, high threshold
indexes = peakutils.peak.indexes(y, thres=0.5, thres_abs=False)
estimated_gain = np.average(np.diff(indexes), weights=y[indexes[:-1]])
# 2nd stage : Define a threshold for selecting peak (1/15 of the highest peak)
idx_highest_peak = np.argmax(y)
threshold = y[idx_highest_peak] / 15
# 3rd stage : Find all the true peak
indexes = peakutils.peak.indexes(y, thres=threshold, min_dist=estimated_gain, thres_abs=True)
示例#21
0
def data_quality(
        files, dark_filename, time_step, fits_filename, load_files,
        histo_filename, rate_plot_filename, baseline_plot_filename,
        nsb_plot_filename, parameters_filename, template_filename,
        aux_basepath, threshold_sample_pe=20.,
        bias_resistance=1e4 * u.Ohm, cell_capacitance=5e-14 * u.Farad,
        disable_bar=False, aux_services=('DriveSystem',)

):
    input_dir = np.unique([os.path.dirname(file) for file in files])
    if len(input_dir) > 1:
        raise AttributeError("input files must be from the same directories")
    input_dir = input_dir[0]
    if aux_basepath.lower() == "search":
        aux_basepath = input_dir.replace('/raw/', '/aux/')
        print("auxiliary files are expected in", aux_basepath)
    with open(parameters_filename) as file:
        calibration_parameters = yaml.load(file)

    pulse_template = NormalizedPulseTemplate.load(template_filename)
    pulse_area = pulse_template.integral() * u.ns
    gain_integral = np.array(calibration_parameters['gain'])

    charge_to_amplitude = pulse_template.compute_charge_amplitude_ratio(7, 4)
    gain_amplitude = gain_integral * charge_to_amplitude
    crosstalk = np.array(calibration_parameters['mu_xt'])
    pixel_id = np.arange(1296)
    n_pixels = len(pixel_id)
    dark_histo = Histogram1D.load(dark_filename)
    dark_baseline = dark_histo.mean()
    if not load_files:
        events = calibration_event_stream(files, disable_bar=disable_bar)
        events = add_slow_data_calibration(
            events, basepath=aux_basepath, aux_services=aux_services
        )
        events = fill_digicam_baseline(events)
        events = fill_dark_baseline(events, dark_baseline)
        events = subtract_baseline(events)
        events = compute_baseline_shift(events)
        events = compute_nsb_rate(
            events, gain_amplitude, pulse_area, crosstalk, bias_resistance,
            cell_capacitance
        )
        events = compute_gain_drop(events, bias_resistance, cell_capacitance)
        events = compute_sample_photo_electron(events, gain_amplitude)
        events = tag_burst_from_moving_average_baseline(
            events, n_previous_events=100, threshold_lsb=5
        )
        events = compute_3d_cleaning(events, geom=DigiCam.geometry,
                                     threshold_sample_pe=threshold_sample_pe)
        init_time = 0
        baseline = 0
        count = 0
        shower_count = 0
        az = 0
        el = 0
        container = DataQualityContainer()
        file = Serializer(fits_filename, mode='w', format='fits')
        baseline_histo = Histogram1D(
            data_shape=(n_pixels,),
            bin_edges=np.arange(4096)
        )
        for i, event in enumerate(events):
            new_time = event.data.local_time
            if init_time == 0:
                init_time = new_time
            count += 1
            baseline += np.mean(event.data.digicam_baseline)
            az += event.slow_data.DriveSystem.current_position_az
            el += event.slow_data.DriveSystem.current_position_el
            time_diff = new_time - init_time
            if event.data.shower:
                shower_count += 1
            baseline_histo.fill(event.data.digicam_baseline.reshape(-1, 1))
            if time_diff > time_step and i > 0:
                trigger_rate = count / time_diff
                shower_rate = shower_count / time_diff
                baseline = baseline / count
                az = az / count
                el = el / count
                container.trigger_rate = trigger_rate
                container.baseline = baseline
                container.time = (new_time + init_time) / 2
                container.shower_rate = shower_rate
                container.burst = event.data.burst
                nsb_rate = event.data.nsb_rate
                container.nsb_rate = np.nanmean(nsb_rate).value
                container.current_position_az = az
                container.current_position_el = el
                baseline = 0
                count = 0
                init_time = 0
                shower_count = 0
                az = 0
                el = 0
                file.add_container(container)
        output_path = os.path.dirname(histo_filename)
        if not os.path.exists(output_path):
            os.makedirs(output_path)
        baseline_histo.save(histo_filename)
        print(histo_filename, 'created.')
        file.close()
        print(fits_filename, 'created.')

    data = Table.read(fits_filename, format='fits')
    data = data.to_pandas()
    data['time'] = pd.to_datetime(data['time'], utc=True)
    data = data.set_index('time')

    if rate_plot_filename is not None:
        fig1 = plt.figure()
        ax = plt.gca()
        plt.xticks(rotation=70)
        plt.plot(data['trigger_rate']*1E9, '.', label='trigger rate')
        plt.plot(data['shower_rate']*1E9, '.', label='shower_rate')
        plt.ylabel('rate [Hz]')
        plt.legend({'trigger rate', 'shower rate'})
        xlim = plt.xlim()
        plt.xlim(xlim[0] - 1e-3, xlim[1] + 1e-3)  # extra min on the sides
        if rate_plot_filename == "show":
            plt.show()
        else:
            output_path = os.path.dirname(rate_plot_filename)
            if not (output_path == '' or os.path.exists(output_path)):
                os.makedirs(output_path)
            plt.savefig(rate_plot_filename)
        plt.close(fig1)

    if baseline_plot_filename is not None:
        fig2 = plt.figure(figsize=(8, 6))
        ax = plt.gca()
        data_burst = data[data['burst']]
        data_good = data[~data['burst']]
        plt.xticks(rotation=70)
        plt.plot(data_good['baseline'], '.', label='good', ms=2)
        plt.plot(data_burst['baseline'], '.', label='burst', ms=2)
        plt.ylabel('Baseline [LSB]')
        xlim = plt.xlim()
        plt.xlim(xlim[0] - 1e-3, xlim[1] + 1e-3)  # extra min on the sides
        if rate_plot_filename == "show":
            plt.show()
        else:
            output_path = os.path.dirname(baseline_plot_filename)
            if not (output_path == '' or os.path.exists(output_path)):
                os.makedirs(output_path)
            plt.savefig(baseline_plot_filename)
        plt.close(fig2)

    if nsb_plot_filename is not None:
        fig3 = plt.figure()
        ax = fig3.add_subplot(111)
        data.plot(y='nsb_rate', ax=ax)
        ax.set_ylabel('$f_{NSB}$ [GHz]')

        if nsb_plot_filename == "show":
            plt.show()
        else:
            fig3.savefig(nsb_plot_filename)
        plt.close(fig3)

    return
示例#22
0
def nsb_rate(
        baseline_histo_file, dark_histo_file, param_file, template_filename,
        plot="show", plot_nsb_range=None, norm="log",
        bias_resistance=1e4 * u.Ohm, cell_capacitance=5e-14 * u.Farad
):
    baseline_histo = Histogram1D.load(baseline_histo_file)
    dark_histo = Histogram1D.load(dark_histo_file)
    baseline_shift = baseline_histo.mean()-dark_histo.mean()
    n_pixel = len(DigiCam.geometry.neighbors)
    pixels = np.arange(n_pixel, dtype=int)
    with open(param_file) as file:
        pulse_template = NormalizedPulseTemplate.load(template_filename)
        pulse_area = pulse_template.integral() * u.ns
        charge_to_amplitude = pulse_template.compute_charge_amplitude_ratio(7, 4)
        calibration_parameters = yaml.load(file)
        gain_integral = np.array(calibration_parameters['gain'])
        gain_amplitude = gain_integral * charge_to_amplitude
        crosstalk = np.array(calibration_parameters['mu_xt'])
    rate = _compute_nsb_rate(
        baseline_shift=baseline_shift, gain=gain_amplitude,
        pulse_area=pulse_area, crosstalk=crosstalk,
        bias_resistance=bias_resistance, cell_capacitance=cell_capacitance
    )
    bad_pixels = get_bad_pixels(
        calib_file=param_file, nsigma_gain=5, nsigma_elecnoise=5,
        dark_histo=dark_histo_file, nsigma_dark=8, plot=None, output=None
    )
    bad_pixels = np.unique(np.hstack(
        (
            bad_pixels,
            pixels[rate < 0],
            pixels[rate > 5 * u.GHz]
        )
    ))
    avg_matrix = _get_average_matrix_bad_pixels(DigiCam.geometry, bad_pixels)
    good_pixels_mask = np.ones(n_pixel, dtype=bool)
    good_pixels_mask[bad_pixels] = False
    good_pixels = pixels[good_pixels_mask]

    rate[bad_pixels] = avg_matrix[bad_pixels, :].dot(rate[good_pixels])
    if plot is None:
        return rate
    fig1, ax = plt.subplots(1, 1)
    display = CameraDisplay(DigiCam.geometry, ax=ax, norm=norm,
                            title='NSB rate [GHz]')
    rate_ghz = rate.to(u.GHz).value
    display.image = rate_ghz
    if plot_nsb_range is None:
        plot_nsb_range = (np.min(rate_ghz), np.max(rate_ghz))
    display.set_limits_minmax(*plot_nsb_range)
    display.add_colorbar(ax=ax)
    display.highlight_pixels(bad_pixels, color='r', linewidth=2)
    plt.tight_layout()
    output_path = os.path.dirname(plot)
    if plot == "show" or \
            (output_path != "" and not os.path.isdir(output_path)):
        if not plot == "show":
            print('WARNING: Path ' + output_path + ' for output trigger ' +
                  'uniformity does not exist, displaying the plot instead.\n')
        plt.show()
    else:
        plt.savefig(plot)
        print(plot, 'created')
    plt.close(fig1)
    return rate
示例#23
0
def entry():

    args = docopt(__doc__)
    files = args['INPUT']
    debug = args['--debug']

    max_events = convert_max_events_args(args['--max_events'])
    output_path = args['OUTPUT']

    if not os.path.exists(output_path):

        raise IOError('Path for output does not exists \n')

    pixel_id = convert_pixel_args(args['--pixel'])
    integral_width = int(args['--integral_width'])
    shift = int(args['--shift'])
    bin_width = int(args['--bin_width'])
    n_samples = int(args['--n_samples'])  # TODO access this in a better way

    n_pixels = len(pixel_id)

    charge_histo_filename = 'charge_histo_fmpe.pk'
    amplitude_histo_filename = 'amplitude_histo_fmpe.pk'
    timing_histo_filename = 'timing_histo_fmpe.pk'

    if args['--compute']:

        timing_histo = Histogram1D.load(os.path.join(output_path,
                                                     timing_histo_filename))

        pulse_indices = timing_histo.mode() // 4

        mpe.compute(
                files,
                pixel_id, max_events, pulse_indices, integral_width,
                shift, bin_width, output_path,
                charge_histo_filename=charge_histo_filename,
                amplitude_histo_filename=amplitude_histo_filename,
                save=True)

    if args['--fit']:

        charge_histo = Histogram1D.load(
             os.path.join(output_path, charge_histo_filename))
        # charge_histo = Histogram1D.load(
        #   os.path.join(output_path, amplitude_histo_filename))

        gain = np.zeros(n_pixels) * np.nan
        sigma_e = np.zeros(n_pixels) * np.nan
        sigma_s = np.zeros(n_pixels) * np.nan
        baseline = np.zeros(n_pixels) * np.nan
        gain_error = np.zeros(n_pixels) * np.nan
        sigma_e_error = np.zeros(n_pixels) * np.nan
        sigma_s_error = np.zeros(n_pixels) * np.nan
        baseline_error = np.zeros(n_pixels) * np.nan
        chi_2 = np.zeros(n_pixels) * np.nan
        ndf = np.zeros(n_pixels) * np.nan

        n_pe_peaks = 10
        estimated_gain = 20
        min_dist = 5  # int(estimated_gain)

        results_filename = os.path.join(output_path, 'fmpe_results.npz')

        for i, pixel in tqdm(enumerate(pixel_id), total=n_pixels,
                             desc='Pixel'):

            x = charge_histo._bin_centers()
            y = charge_histo.data[i]
            y_err = charge_histo.errors()[i]

            x, y, y_err = compute_data_bounds(x, y, y_err,
                                              estimated_gain, n_pe_peaks)

            try:

                params_init = compute_init_fmpe(x, y, y_err, snr=3,
                                                min_dist=min_dist,
                                                n_pe_peaks=n_pe_peaks,
                                                debug=debug)

                x, y, y_err = compute_data_bounds(x, y, y_err,
                                                  estimated_gain, n_pe_peaks,
                                                  params=params_init)

                params_limit = compute_limit_fmpe(params_init)

                m = fit_fmpe(x, y, y_err,
                             params_init,
                             params_limit)

                gain[i] = m.values['gain']
                gain_error[i] = m.errors['gain']
                sigma_e[i] = m.values['sigma_e']
                sigma_e_error[i] = m.errors['sigma_e']
                sigma_s[i] = m.values['sigma_s']
                sigma_s_error[i] = m.errors['sigma_s']
                baseline[i] = m.values['baseline']
                baseline_error[i] = m.errors['baseline']
                chi_2[i] = m.fval
                ndf[i] = len(x) - len(m.list_of_vary_param())

                fig = plot_fmpe_fit(x, y, y_err, m, pixel)

                # fig.savefig(os.path.join(output_path, 'figures/') +
                #             'fmpe_pixel_{}'.format(pixel))

                if debug:

                    plt.show()

                plt.close()

            except Exception as exception:

                print('Could not fit FMPE in pixel {}'.format(pixel))
                print(exception)

        np.savez(results_filename,
                 gain=gain, sigma_e=sigma_e,
                 sigma_s=sigma_s, baseline=baseline,
                 gain_error=gain_error, sigma_e_error=sigma_e_error,
                 sigma_s_error=sigma_s_error, baseline_error=baseline_error,
                 chi_2=chi_2, ndf=ndf,
                 pixel_id=pixel_id,
                 )

    if args['--save_figures']:

        amplitude_histo_path = os.path.join(output_path,
                                            'amplitude_histo_fmpe.pk')
        charge_histo_path = os.path.join(output_path, 'charge_histo_fmpe.pk')
        timing_histo_path = os.path.join(output_path, 'timing_histo_fmpe.pk')

        charge_histo = Histogram1D.load(charge_histo_path)
        amplitude_histo = Histogram1D.load(amplitude_histo_path)
        timing_histo = Histogram1D.load(timing_histo_path)

        figure_path = os.path.join(output_path, 'figures/')

        if not os.path.exists(figure_path):
            os.makedirs(figure_path)

        figure_1 = plt.figure()
        figure_2 = plt.figure()
        figure_3 = plt.figure()
        axis_1 = figure_1.add_subplot(111)
        axis_2 = figure_2.add_subplot(111)
        axis_3 = figure_3.add_subplot(111)

        for i, pixel in tqdm(enumerate(pixel_id), total=len(pixel_id)):

            try:

                charge_histo.draw(index=(i,), axis=axis_1, log=True,
                                  legend=False)
                amplitude_histo.draw(index=(i,), axis=axis_2, log=True,
                                     legend=False)
                timing_histo.draw(index=(i,), axis=axis_3, log=True,
                                  legend=False)
                figure_1.savefig(figure_path +
                                 'charge_fmpe_pixel_{}'.format(pixel))
                figure_2.savefig(figure_path +
                                 'amplitude_fmpe_pixel_{}'.format(pixel))
                figure_3.savefig(figure_path +
                                 'timing_fmpe_pixel_{}'.format(pixel))

            except Exception as e:

                print('Could not save pixel {} to : {} \n'.
                      format(pixel, figure_path))
                print(e)

            axis_1.clear()
            axis_2.clear()
            axis_3.clear()

    if args['--display']:

        amplitude_histo_path = os.path.join(output_path,
                                            'amplitude_histo_fmpe.pk')
        charge_histo_path = os.path.join(output_path,
                                         'charge_histo_fmpe.pk')
        timing_histo_path = os.path.join(output_path,
                                         'timing_histo_fmpe.pk')

        charge_histo = Histogram1D.load(charge_histo_path)
        charge_histo.draw(index=(0,), log=False, legend=False)

        amplitude_histo = Histogram1D.load(amplitude_histo_path)
        amplitude_histo.draw(index=(0,), log=False, legend=False)

        timing_histo = Histogram1D.load(timing_histo_path)
        timing_histo.draw(index=(0,), log=False, legend=False)
        plt.show()

        pass

    return
示例#24
0
def nsb_rate(
        files, aux_basepath, dark_histo_file, param_file, template_filename,
        output=None, plot="show", plot_nsb_range=None, norm="log",
        plot_baselines=False, disable_bar=False, max_events=None, n_skip=10,
        stars=True,
        bias_resistance=1e4 * u.Ohm, cell_capacitance=5e-14 * u.Farad
):
    files = np.atleast_1d(files)

    if len(files) == 1 and not files[0].endswith('.fz'):
        table = Table.read(files[0])[:max_events]
        data = dict(table)
        data['nsb_rate'] = np.array(data['nsb_rate']) * u.GHz
    else:
        dark_histo = Histogram1D.load(dark_histo_file)
        n_pixel = len(DigiCam.geometry.neighbors)
        pixels = np.arange(n_pixel, dtype=int)
        with open(param_file) as file:
            pulse_template = NormalizedPulseTemplate.load(template_filename)
            pulse_area = pulse_template.integral() * u.ns
            charge_to_amplitude = pulse_template.compute_charge_amplitude_ratio(7, 4)
            calibration_parameters = yaml.load(file)
            gain_integral = np.array(calibration_parameters['gain'])
            gain_amplitude = gain_integral * charge_to_amplitude
            crosstalk = np.array(calibration_parameters['mu_xt'])
        events = calibration_event_stream(files, max_events=max_events,
                                          disable_bar=disable_bar)
        events = add_slow_data_calibration(
            events, basepath=aux_basepath,
            aux_services=('DriveSystem', )
        )
        data = {
            "baseline": [],
            "nsb_rate": [],
            "good_pixels_mask": [],
            "timestamp": [],
            "event_id": [],
            "az": [],
            "el": [],
        }
        bad_pixels = get_bad_pixels(
            calib_file=param_file, nsigma_gain=5, nsigma_elecnoise=5,
            dark_histo=dark_histo_file, nsigma_dark=8, plot=None, output=None
        )
        events_skipped = 0
        for event in events:
            if event.event_type.INTERNAL not in event.event_type:
                continue
            events_skipped += 1
            if events_skipped < n_skip:
                continue
            events_skipped = 0
            data['baseline'].append(event.data.digicam_baseline)
            baseline_shift = event.data.digicam_baseline - dark_histo.mean()
            rate = _compute_nsb_rate(
                baseline_shift=baseline_shift, gain=gain_amplitude,
                pulse_area=pulse_area, crosstalk=crosstalk,
                bias_resistance=bias_resistance, cell_capacitance=cell_capacitance
            )
            bad_pixels_event = np.unique(np.hstack(
                (
                    bad_pixels,
                    pixels[rate < 0],
                    pixels[rate > 5 * u.GHz]
                )
            ))
            avg_matrix = _get_average_matrix_bad_pixels(
                DigiCam.geometry, bad_pixels_event
            )
            good_pixels_mask = np.ones(n_pixel, dtype=bool)
            good_pixels_mask[bad_pixels_event] = False
            good_pixels = pixels[good_pixels_mask]
            rate[bad_pixels_event] = avg_matrix[bad_pixels_event, :].dot(
                rate[good_pixels]
            )
            data['good_pixels_mask'].append(good_pixels_mask)
            data['timestamp'].append(event.data.local_time)
            data['event_id'].append(event.event_id)
            data['nsb_rate'].append(rate)
            data['az'].append(event.slow_data.DriveSystem.current_position_az)
            data['el'].append(event.slow_data.DriveSystem.current_position_el)
        data['nsb_rate'] = np.array(data['nsb_rate']) * u.GHz
        if output is not None:
            table = Table(data)
            if os.path.isfile(output):
                os.remove(output)
            table.write(output, format='fits')

    time_obs = Time(
        np.array(data['timestamp'], dtype=np.float64) * 1e-9,
        format='unix'
    )
    if plot_baselines:
        fig2, (ax1, ax2) = plt.subplots(2, 1, figsize=(16, 8), dpi=50)
        baseline_std = np.std(data['baseline'], axis=0)
        ax1.hist(baseline_std, 100)
        ax1.set_xlabel('std(baseline) [LSB]')
        # pixels_shown = np.arange(len(baseline_std))[baseline_std > 10]
        pixels_shown = [834,]
        ax2.plot_date(
            time_obs.to_datetime(),
            data['baseline'][:, pixels_shown],
            '-'
        )
        ax2.set_xlabel('time')
        ax2.set_ylabel('baseline [LSB]')
        plt.tight_layout()
        plt.show()
        plt.close(fig2)

    az_obs = np.array(data['az']) * u.deg
    el_obs = np.array(data['el']) * u.deg
    n_event = len(data['timestamp'])
    fig1, ax = plt.subplots(1, 1, figsize=(16, 12), dpi=50)
    date = datetime.fromtimestamp(data['timestamp'][0]*1e-9)
    date_str = date.strftime("%H:%M:%S")
    display = CameraDisplay(
        DigiCam.geometry, ax=ax, norm=norm,
        title='NSB rate [GHz], t=' + date_str
    )
    rate_ghz = np.array(data['nsb_rate'][0].to(u.GHz).value)
    display.image = rate_ghz
    if plot_nsb_range is None:
        min_range_rate = np.max([np.min(rate_ghz), 50e-3])
        plot_nsb_range = (min_range_rate, np.max(rate_ghz))
    display.set_limits_minmax(*plot_nsb_range)
    display.add_colorbar(ax=ax)
    bad_pixels = np.arange(
        len(data['good_pixels_mask'][0])
    )[~data['good_pixels_mask'][0]]
    display.highlight_pixels(bad_pixels, color='r', linewidth=2)
    display.axes.set_xlim([-500., 500.])
    display.axes.set_ylim([-500., 500.])
    plt.tight_layout()
    if stars is True:
        stars_az, stars_alt, stars_pmag = get_stars_in_fov(
            az_obs[0], el_obs[0], time_obs
        )
        stars_x, stars_y = transform_azel_to_xy(
            stars_az, stars_alt, az_obs, el_obs
        )
        point_stars = []
        for index_star in range(len(stars_pmag)):
            point_star, = ax.plot(
                stars_x[index_star, 0],
                stars_y[index_star, 0],
                'ok',
                ms=20-2*stars_pmag[index_star],
                mew=3,
                mfc='None'
            )
            point_stars.append(point_star)

    def update(i, display):
        print('frame', i, '/', len(data['timestamp']))
        display.image = data['nsb_rate'][i].to(u.GHz).value
        date = datetime.fromtimestamp(data['timestamp'][i] * 1e-9)
        date_str = date.strftime("%H:%M:%S")
        display.axes.set_title('NSB rate [GHz], t=' + date_str)
        bad_pixels = np.arange(
            len(data['good_pixels_mask'][i])
        )[~data['good_pixels_mask'][i]]
        display.highlight_pixels(
            bad_pixels, color='r', linewidth=2
        )
        if stars is True:
            for index_star in range(len(stars_pmag)):
                point_stars[index_star].set_xdata(
                    stars_x[index_star, i]
                )
                point_stars[index_star].set_ydata(
                    stars_y[index_star, i]
                )

    anim = FuncAnimation(
        fig1,
        update,
        frames=len(data['timestamp']),
        interval=20,
        fargs=(display, )
    )
    Writer = animation.writers['ffmpeg']
    writer = Writer(fps=50, metadata=dict(artist='Y. Renier'),
                    bitrate=4000, codec='h263p')

    output_path = os.path.dirname(plot)
    if plot == "show" or \
            (output_path != "" and not os.path.isdir(output_path)):
        if not plot == "show":
            print('WARNING: Path ' + output_path + ' for output trigger ' +
                  'uniformity does not exist, displaying the plot instead.\n')
        display.enable_pixel_picker()
        plt.show()
    else:
        anim.save(plot, writer=writer)
        print(plot, 'created')
    plt.close(fig1)
示例#25
0
def entry():

    args = docopt(__doc__)
    files = args['INPUT']
    debug = args['--debug']

    max_events = convert_max_events_args(args['--max_events'])
    pixel_id = convert_pixel_args(args['--pixel'])
    n_samples = int(args['--n_samples'])
    output_path = args['OUTPUT']
    timing_histo_filename = 'timing_histo.pk'

    if not os.path.exists(output_path):

        raise IOError('Path for output does not exists \n')

    if args['--compute']:

        compute(files,
                max_events,
                pixel_id,
                output_path,
                n_samples,
                timing_histo_filename,
                save=True,
                time_method=compute_time_from_leading_edge)

    if args['--save_figures']:

        histo_path = os.path.join(output_path, timing_histo_filename)
        raw_histo = Histogram1D.load(histo_path)

        path = os.path.join(output_path, 'figures/', 'timing_histo/')

        if not os.path.exists(path):
            os.makedirs(path)

        figure = plt.figure()

        for i, pixel in tqdm(enumerate(pixel_id), total=len(pixel_id)):
            axis = figure.add_subplot(111)
            figure_path = path + 'pixel_{}.pdf'

            try:

                raw_histo.draw(index=(i, ), axis=axis, log=True, legend=False)
                figure.savefig(figure_path.format(pixel))

            except Exception as e:

                print('Could not save pixel {} to : {} \n'.format(
                    pixel, figure_path))
                print(e)

            axis.remove()

    if args['--display']:

        path = os.path.join(output_path, timing_histo_filename)
        raw_histo = Histogram1D.load(path)
        raw_histo.draw(index=(0, ), log=True, legend=False)

        plt.show()

    return
示例#26
0
def entry():

    args = docopt(__doc__)
    files = args['INPUT']
    debug = args['--debug']

    max_events = convert_max_events_args(args['--max_events'])
    output_path = args['OUTPUT']

    if not os.path.exists(output_path):

        raise IOError('Path for output does not exists \n')

    pixel_id = convert_pixel_args(args['--pixel'])
    n_pixels = len(pixel_id)

    raw_histo_filename = 'raw_histo.pk'
    amplitude_histo_filename = output_path + 'amplitude_histo.pk'
    charge_histo_filename = output_path + 'charge_histo.pk'
    max_histo_filename = output_path + 'max_histo.pk'
    results_filename = output_path + 'fit_results.h5'
    dark_count_rate_filename = output_path + 'dark_count_rate.npz'
    crosstalk_filename = output_path + 'crosstalk.npz'
    electronic_noise_filename = output_path + 'electronic_noise.npz'

    integral_width = int(args['--integral_width'])
    shift = int(args['--shift'])
    pulse_finder_threshold = float(args['--pulse_finder_threshold'])

    n_samples = int(args['--n_samples'])  # TODO access this in a better way !

    if args['--compute']:

        raw_histo = raw.compute(files,
                                max_events=max_events,
                                pixel_id=pixel_id,
                                output_path=output_path,
                                filename=raw_histo_filename)

        baseline = raw_histo.mode()

        events = calibration_event_stream(files,
                                          pixel_id=pixel_id,
                                          max_events=max_events)

        # events = compute_baseline_with_min(events)
        events = fill_baseline(events, baseline)
        events = subtract_baseline(events)
        events = find_pulse_with_max(events)
        events = compute_charge(events, integral_width, shift)

        max_histo = Histogram1D(data_shape=(n_pixels, ),
                                bin_edges=np.arange(-4095 * integral_width,
                                                    4095 * integral_width),
                                axis_name='[LSB]')

        for event in events:

            max_histo.fill(event.data.reconstructed_charge)

        max_histo.save(max_histo_filename)

        events = calibration_event_stream(files,
                                          max_events=max_events,
                                          pixel_id=pixel_id)

        events = fill_baseline(events, baseline)
        events = subtract_baseline(events)
        # events = find_pulse_1(events, 0.5, 20)
        # events = find_pulse_2(events, widths=[5, 6], threshold_sigma=2)
        # events = find_pulse_fast(events, threshold=pulse_finder_threshold)
        # events = find_pulse_correlate(events,
        #                               threshold=pulse_finder_threshold)
        # events = find_pulse_gaussian_filter(events,
        #                                    threshold=pulse_finder_threshold)

        events = find_pulse_wavelets(events,
                                     widths=[4, 5, 6],
                                     threshold_sigma=2)

        events = compute_charge(events,
                                integral_width=integral_width,
                                shift=shift)
        events = compute_amplitude(events)
        # events = fit_template(events)

        if debug:
            events = plot_event(events, 0)

        spe_charge = Histogram1D(data_shape=(n_pixels, ),
                                 bin_edges=np.arange(-4095 * integral_width,
                                                     4095 * integral_width))
        spe_amplitude = Histogram1D(data_shape=(n_pixels, ),
                                    bin_edges=np.arange(-4095, 4095, 1))

        for event in events:

            spe_charge.fill(event.data.reconstructed_charge)
            spe_amplitude.fill(event.data.reconstructed_amplitude)

        spe_charge.save(charge_histo_filename)
        spe_amplitude.save(amplitude_histo_filename)

    if args['--fit']:

        spe_charge = Histogram1D.load(charge_histo_filename)
        spe_amplitude = Histogram1D.load(amplitude_histo_filename)
        max_histo = Histogram1D.load(max_histo_filename)

        dark_count_rate = np.zeros(n_pixels) * np.nan
        electronic_noise = np.zeros(n_pixels) * np.nan

        for i, pixel in tqdm(enumerate(pixel_id), total=n_pixels,
                             desc='Pixel'):

            x = max_histo._bin_centers()
            y = max_histo.data[i]

            n_entries = np.sum(y)

            mask = (y > 0)
            x = x[mask]
            y = y[mask]

            try:

                val, err = compute_gaussian_parameters_first_peak(
                    x,
                    y,
                    snr=3,
                )

                number_of_zeros = val['amplitude']
                window_length = 4 * n_samples
                rate = compute_dark_rate(number_of_zeros, n_entries,
                                         window_length)
                dark_count_rate[pixel] = rate
                electronic_noise[pixel] = val['sigma']

            except Exception as e:

                print('Could not compute dark count rate in pixel {}'.format(
                    pixel))
                print(e)

        np.savez(dark_count_rate_filename, dcr=dark_count_rate)
        np.savez(electronic_noise_filename, electronic_noise)

        spe = spe_charge
        name = 'charge'
        crosstalk = np.zeros(n_pixels) * np.nan

        results = SPEResultContainer()

        table_name = 'analysis_' + name

        with HDF5TableWriter(results_filename, table_name, mode='w') as h5:

            for i, pixel in tqdm(enumerate(pixel_id),
                                 total=n_pixels,
                                 desc='Pixel'):

                try:

                    x = spe._bin_centers()
                    y = spe.data[i]
                    y_err = spe.errors(index=i)
                    sigma_e = electronic_noise[i]
                    sigma_e = sigma_e if not np.isnan(sigma_e) else None

                    params, params_err, params_init, params_bound = \
                        fit_spe(x, y, y_err, sigma_e=sigma_e,
                                snr=3, debug=debug)

                    for key, val in params.items():

                        setattr(results.init, key, params_init[key])
                        setattr(results.param, key, params[key])
                        setattr(results.param_errors, key, params_err[key])

                    for key, val in results.items():
                        results[key]['pixel_id'] = pixel

                    for key, val in results.items():

                        h5.write('spe_' + key, val)

                    n_entries = params['a_1']
                    n_entries += params['a_2']
                    n_entries += params['a_3']
                    n_entries += params['a_4']
                    crosstalk[pixel] = (n_entries - params['a_1']) / n_entries

                except Exception as e:

                    print('Could not fit for pixel_id : {}'.format(pixel))
                    print(e)

            np.savez(crosstalk_filename, crosstalk)

    if args['--save_figures']:

        spe_charge = Histogram1D.load(charge_histo_filename)
        spe_amplitude = Histogram1D.load(amplitude_histo_filename)
        raw_histo = Histogram1D.load(
            os.path.join(output_path, raw_histo_filename))
        max_histo = Histogram1D.load(max_histo_filename)

        figure_directory = output_path + 'figures/'

        if not os.path.exists(figure_directory):
            os.makedirs(figure_directory)

        histograms = [spe_charge, spe_amplitude, raw_histo, max_histo]
        names = [
            'histogram_charge/', 'histogram_amplitude/', 'histogram_raw/',
            'histo_max/'
        ]

        for i, histo in enumerate(histograms):

            figure = plt.figure()
            histogram_figure_directory = figure_directory + names[i]

            if not os.path.exists(histogram_figure_directory):
                os.makedirs(histogram_figure_directory)

            for j, pixel in enumerate(pixel_id):
                axis = figure.add_subplot(111)
                figure_path = histogram_figure_directory + 'pixel_{}'. \
                    format(pixel)

                try:

                    histo.draw(index=(j, ), axis=axis, log=True, legend=False)
                    figure.savefig(figure_path)

                except Exception as e:

                    print('Could not save pixel {} to : {} \n'.format(
                        pixel, figure_path))
                    print(e)

                axis.remove()

    if args['--display']:

        spe_charge = Histogram1D.load(charge_histo_filename)
        spe_amplitude = Histogram1D.load(amplitude_histo_filename)
        raw_histo = Histogram1D.load(
            os.path.join(output_path, raw_histo_filename))
        max_histo = Histogram1D.load(max_histo_filename)

        spe_charge.draw(index=(0, ), log=True, legend=False)
        spe_amplitude.draw(index=(0, ), log=True, legend=False)
        raw_histo.draw(index=(0, ), log=True, legend=False)
        max_histo.draw(index=(0, ), log=True, legend=False)

        try:
            df = pd.HDFStore(results_filename, mode='r')
            parameters = df['analysis_charge/spe_param']
            parameters_error = df['analysis_charge/spe_param_errors']

            dark_count_rate = np.load(dark_count_rate_filename)['dcr']
            crosstalk = np.load(crosstalk_filename)['arr_0']
        except IOError as e:

            print(e)
            print('Could not find the analysis files !')
            plt.show()
            exit()

        label = 'mean : {:2f} \n std : {:2f}'

        for key, val in parameters.items():

            fig = plt.figure()
            axes = fig.add_subplot(111)
            axes.hist(val,
                      bins='auto',
                      label=label.format(np.mean(val), np.std(val)))
            axes.set_xlabel(key + ' []')
            axes.set_ylabel('count []')
            axes.legend(loc='best')

            # fig = plt.figure()
            # axes = fig.add_subplot(111)
            # axes.hist(parameters_error[key])
            # axes.set_xlabel(key + '_error' + ' []')
            # axes.set_ylabel('count []')

        crosstalk = crosstalk[np.isfinite(crosstalk)]
        dark_count_rate = dark_count_rate[np.isfinite(dark_count_rate)]

        plt.figure()
        plt.hist(crosstalk,
                 bins='auto',
                 label=label.format(np.mean(crosstalk), np.std(crosstalk)))
        plt.xlabel('XT []')
        plt.legend(loc='best')

        plt.figure()
        plt.hist(dark_count_rate[np.isfinite(dark_count_rate)],
                 bins='auto',
                 label=label.format(np.mean(dark_count_rate),
                                    np.std(dark_count_rate)))
        plt.xlabel('dark count rate [GHz]')
        plt.legend(loc='best')

        plt.show()

    return
示例#27
0
def main_pipeline(files,
                  aux_basepath,
                  max_events,
                  dark_filename,
                  integral_width,
                  debug,
                  hillas_filename,
                  parameters_filename,
                  picture_threshold,
                  boundary_threshold,
                  template_filename,
                  saturation_threshold,
                  threshold_pulse,
                  bad_pixels=None,
                  disable_bar=False):
    # get configuration
    with open(parameters_filename) as file:
        calibration_parameters = yaml.load(file)
    if bad_pixels is None:
        bad_pixels = get_bad_pixels(calib_file=parameters_filename,
                                    dark_histo=dark_filename,
                                    plot=None)
    pulse_template = NormalizedPulseTemplate.load(template_filename)
    pulse_area = pulse_template.integral() * u.ns
    ratio = pulse_template.compute_charge_amplitude_ratio(
        integral_width=integral_width, dt_sampling=4)  # ~ 0.24
    gain = np.array(calibration_parameters['gain'])  # ~ 20 LSB / p.e.
    gain_amplitude = gain * ratio
    crosstalk = np.array(calibration_parameters['mu_xt'])
    bias_resistance = 10 * 1E3 * u.Ohm  # 10 kOhm
    cell_capacitance = 50 * 1E-15 * u.Farad  # 50 fF
    geom = DigiCam.geometry
    dark_histo = Histogram1D.load(dark_filename)
    dark_baseline = dark_histo.mean()

    # define pipeline
    events = calibration_event_stream(files,
                                      max_events=max_events,
                                      disable_bar=disable_bar)
    events = add_slow_data_calibration(
        events,
        basepath=aux_basepath,
        aux_services=('DriveSystem', 'DigicamSlowControl', 'MasterSST1M',
                      'SafetyPLC', 'PDPSlowControl'))
    events = baseline.fill_dark_baseline(events, dark_baseline)
    events = baseline.fill_digicam_baseline(events)
    events = tagging.tag_burst_from_moving_average_baseline(events)
    events = baseline.compute_baseline_shift(events)
    events = baseline.subtract_baseline(events)
    events = filters.filter_clocked_trigger(events)
    events = baseline.compute_nsb_rate(events, gain_amplitude, pulse_area,
                                       crosstalk, bias_resistance,
                                       cell_capacitance)
    events = baseline.compute_gain_drop(events, bias_resistance,
                                        cell_capacitance)
    events = peak.find_pulse_with_max(events)
    events = charge.compute_dynamic_charge(
        events,
        integral_width=integral_width,
        saturation_threshold=saturation_threshold,
        threshold_pulse=threshold_pulse,
        debug=debug,
        pulse_tail=False,
    )
    events = charge.compute_photo_electron(events, gains=gain)
    events = charge.interpolate_bad_pixels(events, geom, bad_pixels)
    events = cleaning.compute_tailcuts_clean(
        events,
        geom=geom,
        overwrite=True,
        picture_thresh=picture_threshold,
        boundary_thresh=boundary_threshold,
        keep_isolated_pixels=False)
    events = cleaning.compute_boarder_cleaning(events, geom,
                                               boundary_threshold)
    events = cleaning.compute_dilate(events, geom)
    events = image.compute_hillas_parameters(events, geom)
    events = charge.compute_sample_photo_electron(events, gain_amplitude)
    events = cleaning.compute_3d_cleaning(events,
                                          geom,
                                          n_sample=50,
                                          threshold_sample_pe=20,
                                          threshold_time=2.1 * u.ns,
                                          threshold_size=0.005 * u.mm)
    # create pipeline output file
    output_file = Serializer(hillas_filename, mode='w', format='fits')
    data_to_store = PipelineOutputContainer()
    for event in events:
        if debug:
            print(event.hillas)
            print(event.data.nsb_rate)
            print(event.data.gain_drop)
            print(event.data.baseline_shift)
            print(event.data.border)
            plot_array_camera(np.max(event.data.adc_samples, axis=-1))
            plot_array_camera(
                np.nanmax(event.data.reconstructed_charge, axis=-1))
            plot_array_camera(event.data.cleaning_mask.astype(float))
            plot_array_camera(event.data.reconstructed_number_of_pe)
            plt.show()
        # fill container
        data_to_store.local_time = event.data.local_time
        data_to_store.event_type = event.event_type
        data_to_store.event_id = event.event_id
        data_to_store.az = event.slow_data.DriveSystem.current_position_az
        data_to_store.el = event.slow_data.DriveSystem.current_position_el

        r = event.hillas.r
        phi = event.hillas.phi
        psi = event.hillas.psi
        alpha = compute_alpha(phi.value, psi.value) * psi.unit
        data_to_store.alpha = alpha
        data_to_store.miss = compute_miss(r=r.value, alpha=alpha.value)
        data_to_store.miss = data_to_store.miss * r.unit
        data_to_store.baseline = np.mean(event.data.digicam_baseline)
        data_to_store.nsb_rate = np.mean(event.data.nsb_rate)
        temp_crate1 = event.slow_data.DigicamSlowControl.Crate1_T
        temp_crate2 = event.slow_data.DigicamSlowControl.Crate2_T
        temp_crate3 = event.slow_data.DigicamSlowControl.Crate3_T
        temp_digicam = np.array(
            np.hstack([temp_crate1, temp_crate2, temp_crate3]))
        temp_digicam_mean = np.mean(temp_digicam[np.logical_and(
            temp_digicam > 0, temp_digicam < 60)])
        data_to_store.digicam_temperature = temp_digicam_mean
        temp_sector1 = event.slow_data.PDPSlowControl.Sector1_T
        temp_sector2 = event.slow_data.PDPSlowControl.Sector2_T
        temp_sector3 = event.slow_data.PDPSlowControl.Sector3_T
        temp_pdp = np.array(
            np.hstack([temp_sector1, temp_sector2, temp_sector3]))
        temp_pdp_mean = np.mean(temp_pdp[np.logical_and(
            temp_pdp > 0, temp_pdp < 60)])
        data_to_store.pdp_temperature = temp_pdp_mean
        target_radec = event.slow_data.MasterSST1M.target_radec
        data_to_store.target_ra = target_radec[0]
        data_to_store.target_dec = target_radec[1]
        status_leds = event.slow_data.SafetyPLC.SPLC_CAM_Status
        # bit 8 of status_LEDs is about on/off, bit 9 about blinking
        data_to_store.pointing_leds_on = bool((status_leds & 1 << 8) >> 8)
        data_to_store.pointing_leds_blink = bool((status_leds & 1 << 9) >> 9)
        hv_sector1 = event.slow_data.PDPSlowControl.Sector1_HV
        hv_sector2 = event.slow_data.PDPSlowControl.Sector2_HV
        hv_sector3 = event.slow_data.PDPSlowControl.Sector3_HV
        hv_pdp = np.array(np.hstack([hv_sector1, hv_sector2, hv_sector3]),
                          dtype=bool)
        data_to_store.all_hv_on = np.all(hv_pdp)
        ghv_sector1 = event.slow_data.PDPSlowControl.Sector1_GHV
        ghv_sector2 = event.slow_data.PDPSlowControl.Sector2_GHV
        ghv_sector3 = event.slow_data.PDPSlowControl.Sector3_GHV
        ghv_pdp = np.array(np.hstack([ghv_sector1, ghv_sector2, ghv_sector3]),
                           dtype=bool)
        data_to_store.all_ghv_on = np.all(ghv_pdp)
        is_on_source = bool(event.slow_data.DriveSystem.is_on_source)
        data_to_store.is_on_source = is_on_source
        is_tracking = bool(event.slow_data.DriveSystem.is_tracking)
        data_to_store.is_tracking = is_tracking
        data_to_store.shower = bool(event.data.shower)
        data_to_store.border = bool(event.data.border)
        data_to_store.burst = bool(event.data.burst)
        data_to_store.saturated = bool(event.data.saturated)
        for key, val in event.hillas.items():
            data_to_store[key] = val
        output_file.add_container(data_to_store)
    try:
        output_file.close()
        print(hillas_filename, 'created.')
    except ValueError:
        print('WARNING: no data to save,', hillas_filename, 'not created.')
示例#28
0
def entry():
    args = docopt(__doc__)
    files = args['<INPUT>']
    debug = args['--debug']

    max_events = convert_int(args['--max_events'])
    output_path = args['--output']

    if not os.path.exists(output_path):
        raise IOError('Path for output does not exists \n')

    pixel_id = convert_pixel_args(args['--pixel'])
    integral_width = int(args['--integral_width'])
    shift = int(args['--shift'])
    bin_width = int(args['--bin_width'])

    n_pixels = len(pixel_id)

    charge_histo_filename = os.path.join(output_path, 'charge_histo_fmpe.pk')
    amplitude_histo_filename = os.path.join(output_path,
                                            'amplitude_histo_fmpe.pk')
    results_filename = os.path.join(output_path, 'fmpe_fit_results.fits')
    timing_filename = args['--timing']
    n_samples = int(args['--n_samples'])
    ncall = int(args['--ncall'])
    estimated_gain = float(args['--estimated_gain'])

    if args['--compute']:
        compute(files,
                max_events=max_events,
                pixel_id=pixel_id,
                n_samples=n_samples,
                timing_filename=timing_filename,
                charge_histo_filename=charge_histo_filename,
                amplitude_histo_filename=amplitude_histo_filename,
                save=True,
                integral_width=integral_width,
                shift=shift,
                bin_width=bin_width)

    if args['--fit']:

        charge_histo = Histogram1D.load(charge_histo_filename)

        param_names = describe(FMPEFitter.pdf)[2:]
        param_error_names = [key + '_error' for key in param_names]
        columns = param_names + param_error_names
        columns = columns + ['chi_2', 'ndf']
        data = np.zeros((n_pixels, len(columns))) * np.nan

        results = pd.DataFrame(data=data, columns=columns)

        for i, pixel in tqdm(enumerate(pixel_id), total=n_pixels,
                             desc='Pixel'):
            histo = charge_histo[i]

            try:

                fitter = FMPEFitter(histo,
                                    estimated_gain=estimated_gain,
                                    throw_nan=True)
                fitter.fit(ncall=ncall)

                fitter = FMPEFitter(histo,
                                    estimated_gain=estimated_gain,
                                    initial_parameters=fitter.parameters,
                                    throw_nan=True)
                fitter.fit(ncall=ncall)

                param = dict(fitter.parameters)
                param_error = dict(fitter.errors)
                param_error = {
                    key + '_error': val
                    for key, val in param_error.items()
                }

                param.update(param_error)
                param['chi_2'] = fitter.fit_test() * fitter.ndf
                param['ndf'] = fitter.ndf
                results.iloc[pixel] = param

                if debug:
                    x_label = 'Charge [LSB]'
                    label = 'Pixel {}'.format(pixel)

                    fitter.draw(x_label=x_label, label=label, legend=False)
                    fitter.draw_fit(x_label=x_label, label=label, legend=False)
                    fitter.draw_init(x_label=x_label,
                                     label=label,
                                     legend=False)

                    print(results.iloc[pixel])

                    plt.show()

            except Exception as exception:

                print('Could not fit FMPE in pixel {}'.format(pixel))
                print(exception)

        if not debug:

            with fitsio.FITS(results_filename, 'rw') as f:

                f.write(results.to_records(index=False))

    if args['--save_figures']:

        charge_histo = Histogram1D.load(charge_histo_filename)

        figure_path = os.path.join(output_path, 'figures/')

        if not os.path.exists(figure_path):
            os.makedirs(figure_path)

        plot_results(results_filename, figure_path)

        for i, pixel in tqdm(enumerate(pixel_id), total=len(pixel_id)):

            try:

                plot_fit(charge_histo, results_filename, i, figure_path)

                plt.close()

            except Exception as e:

                print('Could not save pixel {} to : {} \n'.format(
                    pixel, figure_path))
                print(e)

    if args['--display']:

        pixel = 0
        charge_histo = Histogram1D.load(charge_histo_filename)

        plot_results(results_filename)
        plot_fit(charge_histo, results_filename, pixel=pixel)

        plt.show()

        pass

    return
示例#29
0
def entry():

    args = docopt(__doc__)
    input_dir = convert_text(args['--input_dir'])
    output_dir = convert_text(args['--output_dir'])
    channel = convert_int(args['--channel'])
    polarization = convert_int(args['--polarization'])
    initial_values_dir = convert_text(args['--initial_values_dir'])
    debug = args['--debug']

    if args['compute']:

        file_list = read.give_list_of_file(input_dir)

        pdf_charge_draw = PdfPages('{}/plots/charge_ch{}.pdf'.format(
            output_dir, channel))

        for f in file_list:
            bias_voltage = float(re.findall('\d+\.\d+', f)[0])
            f = input_dir + '/' + f
            print(f)

            baseline, peak_index = read.average_baseline(
                file=f, polarization=polarization)

            waveforms = read.read_data(file=f, polarization=polarization)
            integral_charge, left_int_bound, right_int_bound = get_integral_charge(
                waveform_iter=waveforms,
                peak_index=peak_index,
                baseline=baseline,
                integration_bounds=[10, 15])
            waveforms = read.read_data(file=f, polarization=polarization)
            amplitude_charge, left_window_bound, right_window_bound = get_amplitude_charge(
                waveform_iter=waveforms,
                peak_index=peak_index,
                baseline=baseline,
                window_bound=[50, 100])

            if debug:

                print('Charge debugging waveform')
                waveforms = read.read_data(file=f, polarization=polarization)
                cnt = 0

                pdf_charge_debug = PdfPages(
                    '{}/plots/debug_charge_ch{}_V{}.pdf'.format(
                        output_dir, channel, bias_voltage))

                for time, waveform in waveforms:

                    if cnt % 1000 == 0:
                        fig, ax = read.draw_waveform(
                            time,
                            waveform,
                            baseline=baseline,
                            label='waveform {}'.format(cnt))
                        time = time / 1e-6
                        waveform = waveform * 1e3
                        ax.plot(time[left_int_bound:right_int_bound],
                                waveform[left_int_bound:right_int_bound],
                                label='Integration samples',
                                color='tab:red')
                        ax.legend()

                        pdf_charge_debug.savefig(fig)
                        plt.close(fig)
                    cnt += 1

                pdf_charge_debug.close()
                print('End of charge debugging waveform')

            histo_data = [integral_charge, amplitude_charge]
            histo_label = ['integral charge', 'amplitude charge']

            for i, data in enumerate(histo_data):

                # Histogram creation
                bins = 100
                bin_edges = np.linspace(np.min(data), np.max(data) + 1, bins)
                histogram = Histogram1D(bin_edges=bin_edges)
                histogram.fill(data)

                # Histogram display
                fig, ax = plt.subplots()
                histogram.draw(axis=ax,
                               label='{} : V = {} V'.format(
                                   histo_label[i], bias_voltage),
                               legend=False)
                text = histogram._write_info(())
                anchored_text = AnchoredText(text, loc=5)
                ax.add_artist(anchored_text)
                pdf_charge_draw.savefig(fig)
                print('{} at {} V figure saved'.format(histo_label[i],
                                                       bias_voltage))
                #plt.show()
                plt.close(fig)

                # Formatting to use in the digicampipe fitting single mpe method
                histogram.data = histogram.data.reshape((1, 1, -1))
                histogram.overflow = histogram.overflow.reshape((1, -1))
                histogram.underflow = histogram.underflow.reshape((1, -1))

                histogram.save('{}/charge/{}/ch{}_V_{}.fits'.format(
                    output_dir, histo_label[i].replace(" ", "_"), channel,
                    bias_voltage))

        pdf_charge_draw.close()

    if args['fit']:

        file_list = read.give_list_of_file(input_dir)
        yaml_list = read.give_list_of_file(initial_values_dir)

        file_list.sort()
        yaml_list.sort()

        print(file_list)
        print(yaml_list)

        fit_parameters = {}

        for k, f in enumerate(file_list):

            level = 'LVL_{}'.format(k)
            bias_voltage = float(re.findall('\d+\.\d+', f)[0])

            print('Fitting charge')
            f = input_dir + '/' + f
            i_val = initial_values_dir + '/' + yaml_list[k]
            print('charge file :', f)
            print('initialization file :', i_val)

            with open(i_val) as file:
                init_parameters = yaml.load(file, Loader=yaml.FullLoader)
                print('Initial Fitting parameters', init_parameters)

            # We need this new format to make work our fit function, it was built that way
            temp_dict = {}
            for key, value in init_parameters.items():
                temp_dict[key] = np.array([[value]])
            init_parameters = temp_dict
            del temp_dict

            data = fit_single_mpe(f,
                                  ac_levels=[0],
                                  pixel_ids=[0],
                                  init_params=init_parameters,
                                  debug=True)

            temp_data = {}
            for key, value in data.items():
                if key is not 'pixel_ids':
                    temp_data[key] = (value[0][0]).tolist()

            temp_data['bias_voltage'] = bias_voltage
            fit_parameters[level] = temp_data

        print('fit_parameter', fit_parameters)
        fit_parameters_file = '{}/fit_parameters.yml'.format(output_dir)

        with open(fit_parameters_file, 'w') as file:
            yaml.dump(fit_parameters, file)

    if args['save_figure']:
        print('save_figure')

        file_list = read.give_list_of_file(input_dir)

        fig, ax = plt.subplots()
        for f in file_list:
            bias_voltage = float(re.findall('\d+\.\d+', f)[0])
            f = os.path.join(input_dir, f)
            print('File : ', f)

            histogram = Histogram1D.load(f)

            histogram.draw(axis=ax,
                           legend=False,
                           label='Bias voltage : {}'.format(bias_voltage))

        pdf_superposition_charge = PdfPages(
            os.path.join(output_dir,
                         'charge_in_bias_voltage_ch{}.pdf'.format(channel)))
        pdf_superposition_charge.savefig(fig)
        pdf_superposition_charge.close()
        #plt.show()
        plt.close(fig)
示例#30
0
def entry():
    args = docopt(__doc__)
    files = args['<INPUT>']
    max_events = convert_int(args['--max_events'])
    pixel_id = convert_pixel_args(args['--pixel'])
    base_sub = args['--baseline_subtracted']
    raw_histo_filename = args['--output']
    event_types = convert_list_int(args['--event_types'])
    baseline_filename = args['--baseline_filename']
    disable_bar = args['--disable_bar']
    if baseline_filename.lower() == 'none':
        baseline_filename = None
    output_path = os.path.dirname(raw_histo_filename)
    if not os.path.exists(output_path) and output_path != "":
        raise IOError('Path {} for output '
                      'does not exists \n'.format(output_path))

    if args['--compute']:
        compute(files=files,
                filename=raw_histo_filename,
                max_events=max_events,
                pixel_id=pixel_id,
                event_types=event_types,
                disable_bar=disable_bar,
                baseline_subtracted=base_sub)
        if baseline_filename:
            compute_baseline_histogram(files=files,
                                       filename=baseline_filename,
                                       max_events=max_events,
                                       pixel_id=pixel_id,
                                       disable_bar=disable_bar)

    if args['--save_figures']:
        raw_histo = Histogram1D.load(raw_histo_filename)
        path = os.path.join(output_path, 'figures/', 'raw_histo/')
        if not os.path.exists(path):
            os.makedirs(path)
        figure = plt.figure()
        for i, pixel in tqdm(enumerate(pixel_id), total=len(pixel_id)):
            axis = figure.add_subplot(111)
            figure_path = os.path.join(path, 'pixel_{}.pdf')
            try:
                raw_histo.draw(index=(i, ), axis=axis, log=True, legend=False)
                figure.savefig(figure_path.format(pixel))
            except Exception as e:
                print('Could not save pixel {} to : {} \n'.format(
                    pixel, figure_path))
                print(e)
            axis.remove()

    if args['--display']:
        raw_histo = Histogram1D.load(raw_histo_filename)
        pixel = 0
        raw_histo.draw(index=(pixel, ),
                       log=True,
                       legend=False,
                       label='Histogram {}'.format(pixel),
                       x_label='[LSB]')
        mean_value = raw_histo.mean()
        plot_histo(mean_value, bins='auto', x_label='Mean value [LSB]')
        plot_array_camera(mean_value, label='Mean value [LSB]')
        if baseline_filename:
            baseline_histo = Histogram1D.load(baseline_filename)
            baseline_histo.draw(index=(pixel, ),
                                log=True,
                                legend=False,
                                label='Histogram {}'.format(pixel),
                                x_label='DigiCam baseline [LSB]')
            mean_baseline = baseline_histo.mean()
            plot_histo(mean_baseline,
                       bins='auto',
                       x_label='Mean DigiCam baseline [LSB]')
            plot_array_camera(mean_baseline,
                              label='Mean DigiCam baseline [LSB]')
            plot_array_camera(mean_baseline - mean_value, label='Diff [LSB]')
            plot_histo(mean_baseline - mean_value,
                       bins='auto',
                       x_label='Diff [LSB]')
        plt.show()