示例#1
0
        for key in initial_conditions.keys():

            initial_condition = initial_conditions[key]
            q = initial_condition['q']
            s_p = initial_condition['s_p']
            s_t = initial_condition['s_t']
            s_s = initial_condition['s_s']
            fill_percent = np.repeat(
                [.99], n_dams4)  #np.random.uniform(0,0.8,n_dams4).round(2)#
            S = (S_max * fill_percent).tolist()
            SSN5.set_dam_state(states=[1 for _ in range(n_dams4)])
            SSN5.initialize(q=q, S=S, s_t=s_t, s_p=s_p, s_s=s_s)

            dc_passive_S4, st_passive_S4 = SSN5.Run_256([0, te], forcing,
                                                        dam_params256)
            out_passive_S4 = SSN5.CalculateOutflow(dam_params256,
                                                   st_passive_S4)

            temp1 = dc_passive_S4.max(
            )  #dc_passive_S4[dc_passive_S4.index>120].max()
            temp2 = out_passive_S4.max(
            )  #out_passive_S4[out_passive_S4.index>120].max()

            dc_passive_Peak_S4 = dc_passive_Peak_S4.append(temp1,
                                                           ignore_index=True)
            out_passive_Peak_S4 = out_passive_Peak_S4.append(temp2,
                                                             ignore_index=True)

        print(
            f'(Scenario-4)Storm:{dstorm} is simulated with given initial conditions!'
        )
示例#2
0
    SSN5.dam_ids = dams5
    H_spill, H_max, S_max, _alpha, diam, c1, c2, L_spill, L_crest = PrepareDamParams(
        dams5)
    dam_params256 = SSN5.init_dam_params256(H_spill, H_max, S_max, _alpha,
                                            diam, c1, c2, L_spill, L_crest)
    q = initial_condition['q']
    s_p = initial_condition['s_p']
    s_t = initial_condition['s_t']
    s_s = initial_condition['s_s']
    fill_percent = np.repeat([0.0001], n_dams5)
    S = (S_max * fill_percent).tolist()
    SSN5.set_dam_state(states=[1 for _ in range(n_dams5)])
    SSN5.initialize(q=q, S=S, s_t=s_t, s_p=s_p, s_s=s_s)
    dc_passive_S5, st_passive_S5 = SSN5.Run_256([0, te], forcing,
                                                dam_params256)
    out_passive_S5 = SSN5.CalculateOutflow(dam_params256, st_passive_S5)
    dc_passive_S5.to_csv(
        f'/Users/gurbuz/Supp_DamStudy/final_ActiveControl/dc_passive_{save_ext}.csv'
    )
    st_passive_S5.to_csv(
        f'/Users/gurbuz/Supp_DamStudy/final_ActiveControl/st_passive_{save_ext}.csv'
    )
    out_passive_S5.to_csv(
        f'/Users/gurbuz/Supp_DamStudy/final_ActiveControl/out_passive_{save_ext}.csv'
    )

    print(f'Done passive in {time.time()-start}')
    ############################################################
    start = time.time()
    print('Running Random..')
    SSN5_r = Watershed(Model=256)
示例#3
0
        te = len(forcing) - 1
        for key in initial_conditions.keys():
            initial_condition = initial_conditions[key]
            q = initial_condition['q']
            s_p = initial_condition['s_p']
            s_t = initial_condition['s_t']
            s_s = initial_condition['s_s']
            fill_percent = np.repeat(
                [.99], n_dams1)  #()np.random.uniform(0,0.8,n_dams1).round(2)
            S = (S_max * fill_percent).tolist()
            SSN2.set_dam_state(states=[1 for _ in range(n_dams1)])
            SSN2.initialize(q=q, S=S, s_t=s_t, s_p=s_p, s_s=s_s)

            dc_passive_S1, st_passive_S1 = SSN2.Run_256([0, te], forcing,
                                                        dam_params256)
            out_passive_S1 = SSN2.CalculateOutflow(dam_params256,
                                                   st_passive_S1)

            temp1 = dc_passive_S1.max(
            )  #dc_passive_S1[dc_passive_S1.index>120].max()
            temp2 = out_passive_S1.max(
            )  #out_passive_S1[out_passive_S1.index>120].max()

            dc_passive_Peak_S1 = dc_passive_Peak_S1.append(temp1,
                                                           ignore_index=True)
            out_passive_Peak_S1 = out_passive_Peak_S1.append(temp2,
                                                             ignore_index=True)

        print(
            f'(Scenario-1)Storm:{dstorm} is simulated with given initial conditions!'
        )