示例#1
0
def run():
    defaults = PaperDefaults()

    #David's globals
    _DEFAULT_TILTEFFECT_DEGPERPIX = .25  # <OToole77>
    _DEFAULT_TILTEFFECT_SIZE = 51  #101
    _DEFAULT_TILTEFFECT_CSIZE = iround(2. / _DEFAULT_TILTEFFECT_DEGPERPIX)
    _DEFAULT_TILTEFFECT_SSIZE = iround(8. / _DEFAULT_TILTEFFECT_DEGPERPIX)
    _DEFAULT_TILTEFFECT_CVAL = .5
    _DEFAULT_TILTEFFECT_SVALS = np.linspace(0.0, 0.5, 10)
    _DEFAULT_TILTEFFECT_SCALES = {'ow77': 0.40, 'ms79': 0.60}  #0.45
    _DEFAULT_TILTEFFECT_NPOINTS = 25  #100
    _DEFAULT_TILTEFFECT_DECODER_TYPE = 'circular_vote'
    _DEFAULT_TILTEFFECT_CSV = {
        'ow77': os.path.join(defaults._DATADIR, 'OW_fig4_Black.csv'),
        'ms79': os.path.join(defaults._DATADIR, 'MS1979.csv'),
    }

    # experiment parameters
    cpt = (_DEFAULT_TILTEFFECT_SIZE // 2, _DEFAULT_TILTEFFECT_SIZE // 2)
    spt = (_DEFAULT_TILTEFFECT_SIZE // 2,
           _DEFAULT_TILTEFFECT_SIZE // 2 + _DEFAULT_TILTEFFECT_CSIZE)
    dt_in = _DEFAULT_TILTEFFECT_CVAL - _DEFAULT_TILTEFFECT_SVALS

    # simulate populations
    im = sp.array([[
        stim.get_center_nfsurrounds(size=_DEFAULT_TILTEFFECT_SIZE,
                                    csize=_DEFAULT_TILTEFFECT_CSIZE,
                                    nsize=_DEFAULT_TILTEFFECT_CSIZE,
                                    fsize=_DEFAULT_TILTEFFECT_SSIZE,
                                    cval=_DEFAULT_TILTEFFECT_CVAL,
                                    nval=_DEFAULT_TILTEFFECT_CVAL,
                                    fval=sval,
                                    bgval=sp.nan)
    ] for sval in _DEFAULT_TILTEFFECT_SVALS])

    # get shifts for model for both papers, and from digitized data
    sortidx = sp.argsort(dt_in)  # re-order in increasing angular differences

    # O'Toole and Wenderoth (1977)
    _, ds_ow77_paper_y = sp.genfromtxt(_DEFAULT_TILTEFFECT_CSV['ow77'],
                                       delimiter=',').T

    extra_vars = {}
    extra_vars['scale'] = _DEFAULT_TILTEFFECT_SCALES['ow77']
    extra_vars['decoder'] = _DEFAULT_TILTEFFECT_DECODER_TYPE
    extra_vars['npoints'] = _DEFAULT_TILTEFFECT_NPOINTS
    extra_vars['npoints'] = _DEFAULT_TILTEFFECT_NPOINTS
    extra_vars['cval'] = _DEFAULT_TILTEFFECT_CVAL
    extra_vars['sortidx'] = sortidx
    extra_vars['cpt'] = cpt
    extra_vars['spt'] = spt
    extra_vars['sval'] = sval
    extra_vars['kind'] = 'circular'
    extra_vars['figure_name'] = 'f3a'
    extra_vars['return_var'] = 'O'
    extra_vars['hp_file'] = os.path.join(defaults._FIGURES, 'best_hps.npz')

    optimize_model(im, ds_ow77_paper_y, extra_vars, defaults)
示例#2
0
def run():
    defaults = PaperDefaults()

    #David's globals
    _DEFAULT_KW97_TILTEFFECT_DEGPERPIX = .45  # <OToole77>
    _DEFAULT_TILTEFFECT_SIZE = 101  #101
    _DEFAULT_KW97_TILTEFFECT_CSIZE = iround(3.6 /
                                            _DEFAULT_KW97_TILTEFFECT_DEGPERPIX)
    _DEFAULT_KW97_TILTEFFECT_NSIZE = iround(5.4 /
                                            _DEFAULT_KW97_TILTEFFECT_DEGPERPIX)
    _DEFAULT_KW97_TILTEFFECT_FSIZE = iround(10.7 /
                                            _DEFAULT_KW97_TILTEFFECT_DEGPERPIX)
    _DEFAULT_TILTEFFECT_CVAL = .5
    _DEFAULT_TILTEFFECT_SVALS = np.linspace(0.0, 0.5, 10)
    _DEFAULT_KW97_TILTEFFECT_SCALE = 1.25
    _DEFAULT_TILTEFFECT_NPOINTS = 25  #100
    _DEFAULT_TILTEFFECT_CIRCULAR = True
    _DEFAULT_TILTEFFECT_DECODER_TYPE = 'circular_vote'
    csvfiles = [
        os.path.join(defaults._DATADIR, 'KW97_GH.csv'),
        os.path.join(defaults._DATADIR, 'KW97_JHK.csv'),
        os.path.join(defaults._DATADIR, 'KW97_LL.csv'),
        os.path.join(defaults._DATADIR, 'KW97_SJL.csv'),
    ]

    # experiment parameters
    cpt = (_DEFAULT_TILTEFFECT_SIZE // 2, _DEFAULT_TILTEFFECT_SIZE // 2)
    spt = (_DEFAULT_TILTEFFECT_SIZE // 2,
           _DEFAULT_TILTEFFECT_SIZE // 2 + _DEFAULT_KW97_TILTEFFECT_CSIZE)
    dt_in = _DEFAULT_TILTEFFECT_CVAL - _DEFAULT_TILTEFFECT_SVALS

    # simulate populations
    im = sp.array([[
        stim.get_center_nfsurrounds(size=_DEFAULT_TILTEFFECT_SIZE,
                                    csize=_DEFAULT_KW97_TILTEFFECT_CSIZE,
                                    nsize=_DEFAULT_KW97_TILTEFFECT_NSIZE,
                                    fsize=_DEFAULT_KW97_TILTEFFECT_FSIZE,
                                    cval=_DEFAULT_TILTEFFECT_CVAL,
                                    nval=sp.nan,
                                    fval=sval,
                                    bgval=sp.nan)
    ] for sval in _DEFAULT_TILTEFFECT_SVALS])

    # get shifts for model for both papers, and from digitized data
    sortidx = sp.argsort(dt_in)  # re-order in increasing angular differences

    # O'Toole and Wenderoth (1977)
    n_subjects = len(csvfiles)
    ds_kw97_paper_x = sp.zeros((n_subjects, 9))
    ds_kw97_paper_y = sp.zeros((n_subjects, 9))

    for sidx, csv in enumerate(csvfiles):
        ds_kw97_paper_x[sidx], ds_kw97_paper_y[sidx] = \
            sp.genfromtxt(csv, delimiter=',').T

    ds_kw97_paper_x = (ds_kw97_paper_x + 360.) % 360. - 45.
    ds_kw97_paper_y = 45. - ds_kw97_paper_y

    for sidx in range(n_subjects):
        ds_kw97_paper_x[sidx] = ds_kw97_paper_x[sidx][sp.argsort(
            ds_kw97_paper_x[sidx])]

    extra_vars = {}
    extra_vars['scale'] = _DEFAULT_KW97_TILTEFFECT_SCALE
    extra_vars['decoder'] = _DEFAULT_TILTEFFECT_DECODER_TYPE
    extra_vars['npoints'] = _DEFAULT_TILTEFFECT_NPOINTS
    extra_vars['npoints'] = _DEFAULT_TILTEFFECT_NPOINTS
    extra_vars['cval'] = _DEFAULT_TILTEFFECT_CVAL
    extra_vars['sortidx'] = sortidx
    extra_vars['cpt'] = cpt
    extra_vars['spt'] = spt
    extra_vars['sval'] = sval
    extra_vars['kind'] = 'circular'
    extra_vars['figure_name'] = 'f3b'
    extra_vars['return_var'] = 'O'
    extra_vars['hp_file'] = os.path.join(defaults._FIGURES, 'best_hps.npz')

    adjusted_gt = signal.resample(np.mean(ds_kw97_paper_y, axis=0), 10)
    optimize_model(im, adjusted_gt, extra_vars, defaults)
示例#3
0
def run():
    defaults = PaperDefaults()

    #David's globals
    size = 51
    mpp = 0.76  # 0.76 # 1.11
    scale = 0.23  # 0.23 # 0.22
    csv_file_x = os.path.join(defaults._DATADIR, 'WL1987_corrected_X.csv')
    csv_file_y = os.path.join(defaults._DATADIR, 'WL1987_corrected_Y.csv')

    # experiment parameters
    dd = (-150., 150.)  # in seconds of arc
    sec2u = lambda s: (s - dd[0]) / (dd[1] - dd[0])
    u2sec = lambda u: u * (dd[1] - dd[0]) + dd[0]
    min2pix = lambda m: iround(m / float(mpp))
    npoints = 50
    ndists = 10
    dists = sp.linspace(0.0, 12., ndists)
    lh, lw = 1, 4.
    ph, pw = 2., 2.
    center_disp = 0.0
    flanker_disp = -33.3
    mp0 = size // 2

    # Need to scale up the ecrfs
    defaults._DEFAULT_PARAMETERS[
        'srf'] = defaults._DEFAULT_PARAMETERS['srf'] * 2 - 1
    defaults._DEFAULT_PARAMETERS[
        'ssn'] = defaults._DEFAULT_PARAMETERS['ssn'] * 2 - 1
    defaults._DEFAULT_PARAMETERS[
        'ssf'] = defaults._DEFAULT_PARAMETERS['ssf'] * 2 - 1

    # simulate populations
    im = get_wl87_stim(size=size,
                       dists=min2pix(dists),
                       cval=sec2u(center_disp),
                       sval=sec2u(flanker_disp),
                       ch=min2pix(lh),
                       cw=min2pix(lw),
                       sh=min2pix(ph),
                       sw=min2pix(pw))

    # Get ground truth data
    paper_data_x = sp.genfromtxt(csv_file_x, delimiter=',')
    paper_data_y = sp.genfromtxt(csv_file_y, delimiter=',') * -1
    paper_fit_y = sfit(sp.linspace(dists.min(), dists.max(), 100),
                       paper_data_x,
                       sp.nanmean(paper_data_y, axis=0),
                       k=2,
                       t=[5.])
    paper_fit_y = paper_fit_y[np.round(
        np.linspace(0, paper_fit_y.shape[0] - 1, ndists)).astype(int)]

    extra_vars = {}
    extra_vars['scale'] = scale
    extra_vars['kind'] = 'gaussian'
    extra_vars['decoder'] = 'circular_vote'
    extra_vars['npoints'] = npoints
    extra_vars['cval'] = sec2u(center_disp)
    extra_vars['sval'] = sec2u(flanker_disp)
    extra_vars['figure_name'] = 'f5'
    extra_vars['u2sec'] = u2sec
    extra_vars['min2pix'] = min2pix
    extra_vars['dists'] = dists
    extra_vars['flanker_disp'] = flanker_disp
    extra_vars['mp0'] = mp0
    extra_vars['lh'] = lh
    extra_vars['pw'] = pw
    extra_vars['size'] = size
    extra_vars['gt_x'] = paper_data_x
    extra_vars['return_var'] = 'O'
    extra_vars['hp_file'] = os.path.join(defaults._FIGURES, 'best_hps.npz')

    optimize_model(im, paper_fit_y, extra_vars, defaults)
示例#4
0
def run(make_stims=False):
    defaults = PaperDefaults()

    #David's globals
    test_colors = ['orange', 'turquoise']
    size = 77
    csize = 3
    ssize = None
    _MINPERPIX = 2.
    _DEFAULT_SM2003_CSIZE_MIN = 6.0
    _DEFAULT_SM2003_SIZE_MIN = 153.0
    _DEFAULT_SM2003_CPDS = sp.array([0., 1., 2., 3.3, 5., 10.])  # <from paper>
    _DEFAULT_SM2003_CPMS = _DEFAULT_SM2003_CPDS / 60.
    _DEFAULT_SM2003_CPSS = iround(1 + _DEFAULT_SM2003_CPMS * \
        (_DEFAULT_SM2003_SIZE_MIN - _DEFAULT_SM2003_CSIZE_MIN)/2.0) # <realistic>
    _DEFAULT_SM2003_CSIZE = iround(_DEFAULT_SM2003_CSIZE_MIN / _MINPERPIX)
    cpss = _DEFAULT_SM2003_CPSS

    #Use color parameters
    defaults._DEFAULT_PARAMETERS['continuous'] = False
    defaults._DEFAULT_PARAMETERS['srf'] = _DEFAULT_SM2003_CSIZE

    csvfiles = {
        'ObsML': {
            'PL': defaults._DATADIR + '/SM2003_Fig5_ObsML_PL.csv',
            'LP': defaults._DATADIR + '/SM2003_Fig5_ObsML_LP.csv',
        },
        'ObsPM': {
            'PL': defaults._DATADIR + '/SM2003_Fig5_ObsPM_PL.csv',
            'LP': defaults._DATADIR + '/SM2003_Fig5_ObsPM_LP.csv',
        },
    }

    _DEFAULT_SM2003_COLORS_RGB = {
        'orange': sp.array([.99, .65, .47]),
        'purple': sp.array([.65, .54, .77]),
        # adjusted to have Y=.30 #sp.array([.60, .49, .71]),
        'purple_alt': sp.array([.60, .48, .70]),
        'lime': sp.array([.56, .60, .49]),
        # adjusted to have Y=.30 #sp.array([.61, .65, .53]),
        'lime_alt': sp.array([.51, .61, .53]),
        'turquoise': sp.array([.44, .78, .73]),
        'neutral': sp.array([.66, .66, .66]),
        'lilac': sp.array([.89, .62, .80]),
        'citrus': sp.array([.67, 1.0, .50]),
        'EEW': sp.array([.58, .58, .58])
    }

    # O'Toole and Wenderoth (1977)
    # load digitzed data from original paper
    ########################################
    shift_phase_paper = sp.array([
        sp.genfromtxt(csvfiles['ObsML']['PL'], delimiter=',').T[1],
        sp.genfromtxt(csvfiles['ObsPM']['PL'], delimiter=',').T[1]
    ])
    shift_anti_paper = sp.array([
        sp.genfromtxt(csvfiles['ObsML']['LP'], delimiter=',').T[1],
        sp.genfromtxt(csvfiles['ObsPM']['LP'], delimiter=',').T[1]
    ])
    shift_phase_paper = np.mean(shift_phase_paper, axis=0)  #double check this
    shift_anti_paper = np.mean(shift_anti_paper, axis=0)
    gt = np.vstack((shift_phase_paper, shift_anti_paper))

    #Also preload regs for postprocessing
    regpath = os.path.join(defaults._WORKDIR,\
        'ShevellMonnier2003.reg.pkl.std.srf%issn%issf%i' \
            % (defaults._DEFAULT_PARAMETERS['srf'], defaults._DEFAULT_PARAMETERS['ssn'], defaults._DEFAULT_PARAMETERS['ssf']))

    reg_X_SO = joblib.load(regpath)['reg_X_SO']
    reg_Y_SO = joblib.load(regpath)['reg_Y_SO']
    reg_Z_SO = joblib.load(regpath)['reg_Z_SO']
    scaler_SO = joblib.load(regpath)['scaler_SO']

    reg_X_SX = joblib.load(regpath)['reg_X_SX']
    reg_Y_SX = joblib.load(regpath)['reg_Y_SX']
    reg_Z_SX = joblib.load(regpath)['reg_Z_SX']
    scaler_SX = joblib.load(regpath)['scaler_SX']

    so2image = cutils.get_XYZ2RGB_predictor(reg_X_SO, reg_Y_SO, reg_Z_SO,
                                            scaler_SO)
    sx2image = cutils.get_XYZ2RGB_predictor(reg_X_SX, reg_Y_SX, reg_Z_SX,
                                            scaler_SX)

    #Add to a dictionary
    extra_vars = {}
    extra_vars['n_cps'] = len(cpss)
    extra_vars['cpss'] = cpss
    extra_vars['test_colors'] = test_colors
    extra_vars['_DEFAULT_SM2003_COLORS_RGB'] = _DEFAULT_SM2003_COLORS_RGB
    extra_vars['size'] = size
    extra_vars['csize'] = csize
    extra_vars['ssize'] = ssize
    extra_vars['kind'] = 'circular'
    extra_vars['so2image'] = so2image
    extra_vars['sx2image'] = sx2image
    extra_vars['n_col'] = len(test_colors)
    extra_vars['figure_name'] = 'f7'
    extra_vars['return_var'] = 'O'
    extra_vars['hp_file'] = os.path.join(defaults._FIGURES, 'best_hps.npz')

    # measure shift for phase & antiphase inducers, for each test
    if make_stims:
        create_stimuli(gt, extra_vars, defaults)
    else:
        optimize_model(gt, extra_vars, defaults)
示例#5
0

def sfit(ptx_eval, ptx, pty, s=1., k=3, t=None):
    """ Fit a bunch of points and return an evaluation vector """
    assert len(ptx) == len(pty)
    if t is None:
        return UnivariateSpline(x=ptx, y=pty, s=s, k=k)(ptx_eval)
    else:
        return LSQUnivariateSpline(x=ptx, y=pty, t=t, k=k)(ptx_eval)


""" Better with center size = 7 and gamma = .25 """
#Figure 3c
_DEFAULT_TILTEFFECT_DEGPERPIX = .25  # <OToole77>
_DEFAULT_TILTEFFECT_SIZE = 51  #101
_DEFAULT_TILTEFFECT_CSIZE = iround(2. / _DEFAULT_TILTEFFECT_DEGPERPIX)
_DEFAULT_TILTEFFECT_SSIZE = iround(8. / _DEFAULT_TILTEFFECT_DEGPERPIX)
_DEFAULT_TILTEFFECT_CVAL = .5
_DEFAULT_TILTEFFECT_SVALS = sp.linspace(0.0, 0.5, 10)
_DEFAULT_TILTEFFECT_SCALES = {'ow77': 0.40, 'ms79': 0.60}  #0.45
_DEFAULT_TILTEFFECT_NPOINTS = 25  #100
_DEFAULT_TILTEFFECT_CIRCULAR = True
_DEFAULT_TILTEFFECT_DECODER_TYPE = 'circular_vote'
_DEFAULT_TILTEFFECT_CSV = {
    'ow77': os.path.join(DATADIR, 'OW_fig4_Black.csv'),
    'ms79': os.path.join(DATADIR, 'MS1979.csv'),
}

_DEFAULT_VALUE_BW3DS_SIZE = 31
_DEFAULT_VALUE_BW3DS_CSIZE = 8
_DEFAULT_VALUE_BW3DS_CVAL = .5