import numpy as np import hmc params = hmc.HMCParams( tau=0.1, tau_g=0.4, L=10, eta=0.0005, mass=1, r_clip=2, grad_clip=1.0, )
import hmc np.random.seed(46327) problem = circle.problem() n, data_dim = problem.data.shape dim = 2 epsilon = 1 delta = 0.1 / n params = hmc.HMCParams( tau=0.6, tau_g=1.9, L=4 * 12, eta=0.07, mass=np.array((1, 1)), r_clip=0.001, grad_clip=0.0015, ) res = hmc.hmc(problem, np.array((0, 1)), epsilon, delta, params) samples = res.chain n_samples = samples.shape[0] proposals = res.leapfrog_chain props_per_sample = int(proposals.shape[0] / (samples.shape[0] - 1)) points = np.zeros((props_per_sample + 1, samples.shape[0], dim)) for i in range(samples.shape[0]): points[0, i, :] = samples[i, :] if i < samples.shape[0] - 1:
import numpy as np import hmc params = hmc.HMCParams( tau=0.05, tau_g=0.20, L=5, eta=0.00004, mass=1, r_clip=20, grad_clip=25.0, )
import numpy as np import hmc params = hmc.HMCParams( tau=0.08, tau_g=0.20, L=10, eta=0.015, mass=1, r_clip=2.5, grad_clip=3.5, )
import numpy as np import hmc params = hmc.HMCParams( tau=0.2, tau_g=0.6, L=10, eta=0.01, mass=1, r_clip=2.5, grad_clip=2.0, )
import numpy as np import hmc params = hmc.HMCParams( tau = 0.05, tau_g = 0.2, L = 10, eta = 0.00015, mass = 1, r_clip = 2.5, grad_clip = 3.0, )
import numpy as np import hmc params = hmc.HMCParams( tau = 0.05, tau_g = 0.10, L = 5, eta = 0.00025, mass = 1,#np.hstack((np.array((0.1, 1)), np.repeat(2, 28))), r_clip = 2.5, grad_clip = 6.0, # tau = 0.05, # tau_g = 0.10, # L = 5, # eta = 0.0002, # mass = np.hstack((np.array((0.1, 1)), np.repeat(2, 28))), # r_clip = 3.1, # grad_clip = 6.0, )
import numpy as np import hmc params = hmc.HMCParams( tau = 0.15, tau_g = 0.25, L = 5, eta = 0.00045, mass = 1, r_clip = 5.0, grad_clip = 2.8, )
import numpy as np import hmc params = hmc.HMCParams( tau=0.05, tau_g=0.20, L=8, eta=0.00007, mass=1, r_clip=30, grad_clip=29.0, )
n, data_dim = problem.data.shape posterior = problem.true_posterior epsilon = 4 delta = 0.1 / n start_point = 2 params = hmc.HMCParams( tau=0.15, tau_g=0.25, L=5, eta=0.00045, mass=1, r_clip=4.0, grad_clip=2.8, # tau = 0.05, # tau_g = 0.20, # L = 8, # eta = 0.00007, # mass = 1,#np.hstack((np.array((0.1, 1)), np.repeat(2, 28))), # r_clip = 30, # grad_clip = 29.0, ) result = hmc.hmc(problem, problem.get_start_point(start_point), epsilon, delta, params) final_chain = result.final_chain print("Acceptance: {}".format(result.acceptance)) print("Clipping: {}".format(result.clipped_r))