示例#1
0
def presgan(dat, netG, netD, log_sigma, args):
    device = args.device
    X_training = dat['X_train'].to(device)
    fixed_noise = torch.randn(args.num_gen_images,
                              args.nz,
                              1,
                              1,
                              device=device)
    optimizerD = optim.Adam(netD.parameters(),
                            lr=args.lrD,
                            betas=(args.beta1, 0.999))
    optimizerG = optim.Adam(netG.parameters(),
                            lr=args.lrG,
                            betas=(args.beta1, 0.999))
    sigma_optimizer = optim.Adam([log_sigma],
                                 lr=args.sigma_lr,
                                 betas=(args.beta1, 0.999))
    if args.restrict_sigma:
        logsigma_min = math.log(math.exp(args.sigma_min) - 1.0)
        logsigma_max = math.log(math.exp(args.sigma_max) - 1.0)
    stepsize = args.stepsize_num / args.nz

    #print(dat['X_train'].shape)
    #print(dat['Y_train'].shape)

    #print(X_training.shape)
    #asdfsadfsfs

    #print(dat['Y_train'])
    #asdfsads

    # use: X_training
    # also use: dat['Y_train']

    losses_NIKlosses = []

    x = X_training
    y = dat['Y_train'].to(device)

    netG.eval()

    for param in netG.parameters():
        param.requires_grad = False

    #netG.eval()

    #for param in netG.parameters():
    #    param.requires_grad = False

    #print(x.shape)
    #print(y.shape)

    #asdfasfsfs

    for itr in range(1, 1 + 1):
        runningLoss_NIKrunningLoss = 0.0

        #for i, (x, y) in enumerate(X_training):
        for i in range(len(X_training)):
            # print(x.shape)
            # print(y.shape)

            # print(y)

            x = x.to(device)

            # args.batchsize = 1024
            # args.batchsize = 16384

            # args.batchsize = 1024
            #args.batchSize = 2048

            #args.batchSize = 2048
            #args.batchSize = 150

            #args.batchSize = 2048
            args.batchSize = 2 * 2048

            # args.batchsize = 1024
            # ggenFGen2 = torch.randn([args.batchsize, nrand], device=device, requires_grad=True)

            # genFGen2 = genGen.forward(ggenFGen2)
            # genFGen2 = genGen.forward(ggenFGen2)

            # ggenFGen2 = torch.randn([args.batchsize, nrand], device=device, requires_grad=True)
            # genFGen2 = genGen.forward(ggenFGen2)

            # ggenFGen2 = torch.randn([args.batchsize, nrand], device=device)
            # genFGen2 = genGen.forward(ggenFGen2)

            with torch.no_grad():
                ggenFGen2 = torch.randn([args.batchSize, 100, 1, 1],
                                        device=device)
                genFGen2 = netG.forward(ggenFGen2)

            # print(x.shape)
            # print(y.shape)

            # print(genFGen2.shape)
            # print(args.batchsize)

            # for i21 in range(len(y)):
            #    if y[i21] == 0 and i21 == 0:
            #        y[i21] = y[i21+1]
            #        x[i21, :, :, :] = x[i21+1, :, :, :]
            #    elif y[i21] == 0:
            #        y[i21] = y[i21 - 1]
            #        x[i21, :, :, :] = x[i21 - 1, :, :, :]

            # y2 = []
            x2 = []
            for i21 in range(len(y)):
                if y[i21] == 1:
                    # y2.append(y[i21])
                    x2.append(x[i21, :, :, :])

            x2 = torch.stack(x2)
            # y2 = torch.stack(y2)

            # y3 = []
            x3 = []
            for i21 in range(len(y)):
                if y[i21] == 2:
                    # y3.append(y[i21])
                    x3.append(x[i21, :, :, :])

            x3 = torch.stack(x3)
            # y3 = torch.stack(y3)

            # y4 = []
            x4 = []
            for i21 in range(len(y)):
                if y[i21] == 3:
                    # y4.append(y[i21])
                    x4.append(x[i21, :, :, :])

            x4 = torch.stack(x4)
            # y4 = torch.stack(y4)

            # print(x2.shape)
            # print(x3.shape)
            # print(x4.shape)

            # print(y2.shape)
            # print(y3.shape)
            # print(y4.shape)

            # y5 = []
            x5 = []
            for i21 in range(len(y)):
                if y[i21] == 4:
                    # y5.append(y[i21])
                    x5.append(x[i21, :, :, :])

            x5 = torch.stack(x5)
            # y5 = torch.stack(y5)

            # y6 = []
            x6 = []
            for i21 in range(len(y)):
                if y[i21] == 5:
                    # y6.append(y[i21])
                    x6.append(x[i21, :, :, :])

            x6 = torch.stack(x6)
            # y6 = torch.stack(y6)

            # y7 = []
            x7 = []
            for i21 in range(len(y)):
                if y[i21] == 6:
                    # y7.append(y[i21])
                    x7.append(x[i21, :, :, :])

            x7 = torch.stack(x7)
            # y7 = torch.stack(y7)

            # y8 = []
            x8 = []
            for i21 in range(len(y)):
                if y[i21] == 7:
                    # y8.append(y[i21])
                    x8.append(x[i21, :, :, :])

            x8 = torch.stack(x8)
            # y8 = torch.stack(y8)

            # y9 = []
            x9 = []
            for i21 in range(len(y)):
                if y[i21] == 8:
                    # y9.append(y[i21])
                    x9.append(x[i21, :, :, :])

            x9 = torch.stack(x9)
            # y9 = torch.stack(y9)

            # y99 = []
            x99 = []
            for i21 in range(len(y)):
                if y[i21] == 9:
                    # y99.append(y[i21])
                    x99.append(x[i21, :, :, :])

            x99 = torch.stack(x99)
            # y99 = torch.stack(y99)

            x999 = []
            for i21 in range(len(y)):
                if y[i21] == 0:
                    x999.append(x[i21, :, :, :])
            x999 = torch.stack(x999)

            # print(x9.shape)
            # print(x99.shape)
            # print(genFGen2.shape)

            #print(x999.shape)
            #asdfasdfs

            genFGen2 = genFGen2.view(-1, 64 * 64)

            x9 = x9.view(-1, 64 * 64)
            x99 = x99.view(-1, 64 * 64)

            # print(x9.shape)
            # print(x99.shape)
            # print(genFGen2.shape)

            # x99 = x99.view(-1, 64 * 64)
            x999 = x999.view(-1, 64 * 64)

            x8 = x8.view(-1, 64 * 64)
            x7 = x7.view(-1, 64 * 64)

            x6 = x6.view(-1, 64 * 64)
            x5 = x5.view(-1, 64 * 64)

            x4 = x4.view(-1, 64 * 64)
            #x3 = x3.view(-1, 64 * 64)

            #x3 = x3.view(-1, 64 * 64)

            #x3 = x3.view(-1, 64 * 64)
            #x3 = x3.view(-1, 64 * 64)

            x3 = x3.view(-1, 64 * 64)

            x2 = x2.view(-1, 64 * 64)
            # x8 = x8.view(-1, 64 * 64)

            # print(args.batchsize)
            # print(genFGen2.shape)

            with torch.no_grad():

                # second_term_loss32 = torch.empty(args.batch_size, device=device, requires_grad=False)
                # second_term_loss32 = torch.empty(args.batchsize, device=device, requires_grad=False)
                second_term_loss32 = torch.empty(args.batchSize, device=device)
                # for i in range(args.batch_size):
                for i in range(args.batchSize):
                    """
                    print(torch.mean(torch.sqrt((genFGen2[i, :] - xData).view(args.batchsize, -1).pow(2).sum(1))))
                    print(torch.mean(torch.sqrt((genFGen2[i, :] - genFGen2).view(args.batchsize, -1).pow(2).sum(1))))
                    print(torch.mean(torch.sqrt((genFGen3[i, :] - genFGen3).pow(2).sum(1))))
                    print('')

                    print(torch.mean(torch.norm((genFGen2[i, :] - xData).view(args.batchsize, -1), p=None, dim=1)))
                    print(torch.mean(torch.norm((genFGen2[i, :] - genFGen2).view(args.batchsize, -1), p=None, dim=1)))
                    print(torch.mean(torch.norm((genFGen3[i, :] - genFGen3), p=None, dim=1)))
                    print('')
                    """

                    # print(torch.mean(torch.sqrt((genFGen2[i, :] - xData).view(args.batchsize, -1).pow(2).sum(1))))
                    # print(torch.mean(torch.sqrt((genFGen2[i, :] - genFGen2).view(args.batchsize, -1).pow(2).sum(1))))
                    # print(torch.mean(torch.sqrt((genFGen3[i, :] - genFGen3).pow(2).sum(1))))
                    # print('')

                    # print(torch.sqrt((genFGen2[i, :] - xData).view(args.batchsize, -1).pow(2).sum(1)))
                    # print(torch.sqrt((genFGen2[i, :] - genFGen2).view(args.batchsize, -1).pow(2).sum(1)))
                    # print(torch.sqrt((genFGen3[i, :] - genFGen3).pow(2).sum(1)))
                    # print('')

                    # second_term_loss22 = torch.norm(genFGen2[i, :] - xData, p='fro', dim=1).requires_grad_()
                    # second_term_loss22 = torch.norm(genFGen2[i, :] - xData, p=None, dim=1).requires_grad_()
                    # second_term_loss22 = torch.norm(genFGen2[i, :] - xData, p=None, dim=1).requires_grad_()**2
                    # second_term_loss22 = torch.sqrt((genFGen2[i, :] - xData).pow(2).sum(1))**2
                    # second_term_loss22 = torch.sqrt(1e-17 + (genFGen2[i, :] - xData).pow(2).sum(1)).requires_grad_()**2

                    # second_term_loss22 = torch.sqrt(1e-17 + (genFGen2[i, :] - xData).pow(2).sum(1)).requires_grad_() ** 2

                    # second_term_loss22 = torch.sqrt(1e-17 + (genFGen2[i, :] - xData).pow(2).sum(1)).requires_grad_() ** 2
                    # second_term_loss22 = torch.sqrt(1e-17 + (genFGen2[i, :] - xData).view(args.batchsize, -1).pow(2).sum(1)).requires_grad_() ** 2

                    # second_term_loss22 = torch.sqrt(
                    #    1e-17 + (genFGen2[i, :] - xData).view(args.batchsize, -1).pow(2).sum(1)).requires_grad_() ** 2

                    # second_term_loss22 = torch.norm(genFGen2[i, :] - xData, p=None, dim=1).requires_grad_()**2
                    # second_term_loss22 = torch.sqrt((genFGen2[i, :] - xData).pow(2).sum(1)) ** 2

                    # tempVarVar21 = genFGen2[i, :] - xData
                    # print(tempVarVar21.shape)

                    # print(i)

                    # second_term_loss22 = torch.sqrt(1e-17 + (genFGen2[i, :] - xData).pow(2).sum(1)).requires_grad_() ** 2
                    # second_term_loss22 = torch.sqrt((genFGen2[i, :] - xData).pow(2).sum(1)) ** 2

                    # second_term_loss22 = torch.sqrt((genFGen2[i, :] - xData).pow(2).sum(1)) ** 2

                    # second_term_loss22 = torch.sqrt((genFGen2[i, :] - xData).pow(2).sum(1)) ** 2
                    # second_term_loss22 = torch.sqrt((genFGen2[i, :] - xData).pow(2).sum(1)) ** 2

                    # second_term_loss22 = torch.sqrt((genFGen2[i, :] - xData).pow(2).sum(1)) ** 2
                    # second_term_loss22 = torch.sqrt((genFGen2[i, :] - x99).pow(2).sum(1)) ** 2

                    # second_term_losss22 = torch.sqrt((genFGen2[i, :] - x9).pow(2).sum(1)) ** 2
                    # second_term_lossss22 = torch.sqrt((genFGen2[i, :] - x8).pow(2).sum(1)) ** 2

                    # second_term_losssss22 = torch.sqrt((genFGen2[i, :] - x7).pow(2).sum(1)) ** 2
                    # second_term_lossssss22 = torch.sqrt((genFGen2[i, :] - x6).pow(2).sum(1)) ** 2

                    # second_term_losssssss22 = torch.sqrt((genFGen2[i, :] - x5).pow(2).sum(1)) ** 2
                    # second_term_lossssssss22 = torch.sqrt((genFGen2[i, :] - x4).pow(2).sum(1)) ** 2

                    # second_term_losssssssss22 = torch.sqrt((genFGen2[i, :] - x3).pow(2).sum(1)) ** 2
                    # second_term_lossssssssss22 = torch.sqrt((genFGen2[i, :] - x2).pow(2).sum(1)) ** 2

                    # print(x99.shape)
                    # print(genFGen2[i, :].shape)

                    secondSecSec_term_loss32 = torch.empty(10, device=device)
                    # secondSecSec_term_loss32[8] = torch.sqrt((genFGen2[i, :] - x99).pow(2).sum(1)) ** 2

                    # secondSecSec_term_loss32[8] = torch.sqrt((genFGen2[i, :] - x99).pow(2).sum(1)) ** 2
                    # secondSecSecSec_term_loss32 = torch.sqrt((genFGen2[i, :] - x99).pow(2).sum(1)) ** 2

                    # secondSecSec_term_loss32[8] = torch.sqrt((genFGen2[i, :] - x99).pow(2).sum(1)) ** 2

                    # secondSecSec_term_loss32[8] = torch.sqrt((genFGen2[i, :] - x99).pow(2).sum(1)) ** 2
                    #secondSecSec_term_loss32[8] = torch.min(torch.sqrt((genFGen2[i, :] - x99).pow(2).sum(1)) ** 2)

                    #secondSecSec_term_loss32[7] = torch.min(torch.sqrt((genFGen2[i, :] - x9).pow(2).sum(1)) ** 2)
                    #secondSecSec_term_loss32[6] = torch.min(torch.sqrt((genFGen2[i, :] - x8).pow(2).sum(1)) ** 2)

                    #secondSecSec_term_loss32[5] = torch.min(torch.sqrt((genFGen2[i, :] - x7).pow(2).sum(1)) ** 2)
                    #secondSecSec_term_loss32[4] = torch.min(torch.sqrt((genFGen2[i, :] - x6).pow(2).sum(1)) ** 2)

                    #secondSecSec_term_loss32[3] = torch.min(torch.sqrt((genFGen2[i, :] - x5).pow(2).sum(1)) ** 2)
                    #secondSecSec_term_loss32[2] = torch.min(torch.sqrt((genFGen2[i, :] - x4).pow(2).sum(1)) ** 2)

                    #secondSecSec_term_loss32[1] = torch.min(torch.sqrt((genFGen2[i, :] - x3).pow(2).sum(1)) ** 2)
                    #secondSecSec_term_loss32[0] = torch.min(torch.sqrt((genFGen2[i, :] - x2).pow(2).sum(1)) ** 2)

                    # print(secondSecSec_term_loss32)
                    # print(torch.min(torch.sqrt((genFGen2[i, :] - x999).pow(2).sum(1)) ** 2))

                    # use: x999
                    secondSecSec_term_loss32[0] = torch.min(
                        torch.sqrt((genFGen2[i, :] - x999).pow(2).sum(1))**2)

                    secondSecSec_term_loss32[1] = torch.min(
                        torch.sqrt((genFGen2[i, :] - x2).pow(2).sum(1))**2)
                    secondSecSec_term_loss32[2] = torch.min(
                        torch.sqrt((genFGen2[i, :] - x3).pow(2).sum(1))**2)

                    secondSecSec_term_loss32[3] = torch.min(
                        torch.sqrt((genFGen2[i, :] - x4).pow(2).sum(1))**2)
                    secondSecSec_term_loss32[4] = torch.min(
                        torch.sqrt((genFGen2[i, :] - x5).pow(2).sum(1))**2)

                    secondSecSec_term_loss32[5] = torch.min(
                        torch.sqrt((genFGen2[i, :] - x6).pow(2).sum(1))**2)
                    secondSecSec_term_loss32[6] = torch.min(
                        torch.sqrt((genFGen2[i, :] - x7).pow(2).sum(1))**2)

                    secondSecSec_term_loss32[7] = torch.min(
                        torch.sqrt((genFGen2[i, :] - x8).pow(2).sum(1))**2)
                    secondSecSec_term_loss32[8] = torch.min(
                        torch.sqrt((genFGen2[i, :] - x9).pow(2).sum(1))**2)

                    #secondSecSec_term_loss32[8] = torch.min(torch.sqrt((genFGen2[i, :] - x9).pow(2).sum(1)) ** 2)
                    secondSecSec_term_loss32[9] = torch.min(
                        torch.sqrt((genFGen2[i, :] - x99).pow(2).sum(1))**2)

                    # asdfasdfs

                    # 61562.1641
                    # 4.7732

                    # print(genFGen2[i, :].shape)
                    # print(xData.shape)

                    # tempVarVar21 = genFGen2[i, :] - xData
                    # print(tempVarVar21.shape)

                    # print(second_term_loss22.shape)
                    # adsfasfs

                    # second_term_loss22 = torch.norm(genFGen2[i, :] - xData, p=None, dim=1).requires_grad_()
                    # print(second_term_loss22.shape)
                    # second_term_loss32[i] = torch.min(second_term_loss22)

                    # second_term_loss32[i] = torch.min(second_term_loss22)
                    # second_term_loss32[i] = torch.argmin(secondSecSec_term_loss32)

                    # second_term_loss32[i] = torch.argmin(secondSecSec_term_loss32)
                    second_term_loss32[i] = torch.argmin(
                        secondSecSec_term_loss32)

                    # second_term_loss32[i] = torch.min(second_term_loss22)

                    # second_term_loss32[i] = torch.min(second_term_loss22)
                    # second_term_loss32[i] = torch.min(second_term_loss22)
                # print(second_term_loss32)
                # print(second_term_loss32.shape)
                # print(torch.norm(genFGen2 - xData, p=None, dim=0).shape)
                # second_term_loss22 = torch.min(second_term_loss32)
                # print(second_term_loss22)
                # print(second_term_loss22.shape)
                # second_term_loss2 = torch.mean(second_term_loss32)
                # second_term_loss2 = 0.3 * torch.mean(second_term_loss32)
                # second_term_loss2 = 3.0 * torch.mean(second_term_loss32)
                # second_term_loss2 = 7.62939453125 * torch.mean(second_term_loss32)
                # print(second_term_loss2)
                # print(second_term_loss2.shape)

                # second_term_loss2 = 0.3 * torch.mean(second_term_loss32)

                # second_term_loss2 = 0.3 * torch.mean(second_term_loss32)
                # second_term_loss2 = 0.001 * torch.mean(second_term_loss32)

                # second_term_loss2 = 0.001 * torch.mean(second_term_loss32)

                # second_term_loss2 = 0.001 * torch.mean(second_term_loss32)
                # second_term_loss2 = torch.mean(second_term_loss32)

                # second_term_loss2 = torch.mean(second_term_loss32)

                # second_term_loss2 = torch.mean(second_term_loss32)
                # second_term_loss2 = torch.mean(second_term_loss32)

                # print(second_term_loss2)
                # asdfasfd

                # second_term_loss2.retain_grad()

                # second_term_loss2.retain_grad()
                # second_term_loss2.retain_grad()

                # (?)
                # second_term_loss2.retain_grad()
                # (?)

            # print(second_term_loss2)

            # tensor(89.3141, device='cuda:0')
            # print(second_term_loss2)

            # tensor(89.3141, device='cuda:0')
            # 0,1: tensor(89.3141, device='cuda:0')

            # 0,1: tensor(89.3141, device='cuda:0')
            # 0,2: tensor(63.0707, device='cuda:0')

            # 0,3: tensor(65.5907, device='cuda:0')
            # 0,4: tensor(74.6557, device='cuda:0')

            # 0,5: tensor(58.6006, device='cuda:0')
            # 0,6: tensor(57.5523, device='cuda:0')

            # 0,7: tensor(70.9559, device='cuda:0')
            # 0,8: tensor(64.4004, device='cuda:0')

            # 0,8: tensor(64.4004, device='cuda:0')
            # 0,9: tensor(62.5445, device='cuda:0')

            # print(second_term_loss2)

            # print(second_term_loss2)
            # print(second_term_loss2)

            # print(second_term_loss2)
            # print(second_term_loss32)

            import matplotlib.pyplot as plt
            # plt.plot(second_term_loss32)

            plt.plot(second_term_loss32.cpu())
            plt.savefig('saveSaSaSaSaveStore_second_term_loss32.png',
                        bbox_inches='tight')

            counterFor0 = 0
            counterFor1 = 0
            counterFor2 = 0
            counterFor3 = 0
            counterFor4 = 0
            counterFor5 = 0
            counterFor6 = 0
            counterFor7 = 0
            counterFor8 = 0
            counterFor9 = 0
            for ii_loop21 in range(len(second_term_loss32)):
                if second_term_loss32[ii_loop21] == 0:
                    counterFor0 += 1
                elif second_term_loss32[ii_loop21] == 1:
                    counterFor1 += 1
                elif second_term_loss32[ii_loop21] == 2:
                    counterFor2 += 1
                elif second_term_loss32[ii_loop21] == 3:
                    counterFor3 += 1
                elif second_term_loss32[ii_loop21] == 4:
                    counterFor4 += 1
                elif second_term_loss32[ii_loop21] == 5:
                    counterFor5 += 1
                elif second_term_loss32[ii_loop21] == 6:
                    counterFor6 += 1
                elif second_term_loss32[ii_loop21] == 7:
                    counterFor7 += 1
                elif second_term_loss32[ii_loop21] == 8:
                    counterFor8 += 1
                elif second_term_loss32[ii_loop21] == 9:
                    counterFor9 += 1

            plt.figure()
            plt.plot([
                counterFor0, counterFor1, counterFor2, counterFor3,
                counterFor4, counterFor5, counterFor6, counterFor7,
                counterFor8, counterFor9
            ])
            plt.savefig(
                'saveSaSaveSaSaveSaSaveSaSaSaveStore_second_term_loss32.png',
                bbox_inches='tight')
            plt.savefig('NumberOfOccOccurences_vs_ClassesClusters.png',
                        bbox_inches='tight')

            plt.figure()
            plt.plot([0, 1, 2, 3, 4, 5, 6, 7, 8, 9], [
                counterFor0, counterFor1, counterFor2, counterFor3,
                counterFor4, counterFor5, counterFor6, counterFor7,
                counterFor8, counterFor9
            ],
                     '--bo',
                     linewidth=2,
                     markersize=12)
            plt.ylabel('Number of modes')
            plt.xlabel('Modes')
            plt.savefig('NuNumberOfOccurences_vs_ClassesClusters.png',
                        bbox_inches='tight')

            plt.figure()
            plt.plot([0, 1, 2, 3, 4, 5, 6, 7, 8, 9], [
                counterFor0 /
                (counterFor0 + counterFor1 + counterFor2 + counterFor3 +
                 counterFor4 + counterFor5 + counterFor6 + counterFor7 +
                 counterFor8 + counterFor9), counterFor1 /
                (counterFor0 + counterFor1 + counterFor2 + counterFor3 +
                 counterFor4 + counterFor5 + counterFor6 + counterFor7 +
                 counterFor8 + counterFor9), counterFor2 /
                (counterFor0 + counterFor1 + counterFor2 + counterFor3 +
                 counterFor4 + counterFor5 + counterFor6 + counterFor7 +
                 counterFor8 + counterFor9), counterFor3 /
                (counterFor0 + counterFor1 + counterFor2 + counterFor3 +
                 counterFor4 + counterFor5 + counterFor6 + counterFor7 +
                 counterFor8 + counterFor9), counterFor4 /
                (counterFor0 + counterFor1 + counterFor2 + counterFor3 +
                 counterFor4 + counterFor5 + counterFor6 + counterFor7 +
                 counterFor8 + counterFor9), counterFor5 /
                (counterFor0 + counterFor1 + counterFor2 + counterFor3 +
                 counterFor4 + counterFor5 + counterFor6 + counterFor7 +
                 counterFor8 + counterFor9), counterFor6 /
                (counterFor0 + counterFor1 + counterFor2 + counterFor3 +
                 counterFor4 + counterFor5 + counterFor6 + counterFor7 +
                 counterFor8 + counterFor9), counterFor7 /
                (counterFor0 + counterFor1 + counterFor2 + counterFor3 +
                 counterFor4 + counterFor5 + counterFor6 + counterFor7 +
                 counterFor8 + counterFor9), counterFor8 /
                (counterFor0 + counterFor1 + counterFor2 + counterFor3 +
                 counterFor4 + counterFor5 + counterFor6 + counterFor7 +
                 counterFor8 + counterFor9), counterFor9 /
                (counterFor0 + counterFor1 + counterFor2 + counterFor3 +
                 counterFor4 + counterFor5 + counterFor6 + counterFor7 +
                 counterFor8 + counterFor9)
            ],
                     '--bo',
                     linewidth=2,
                     markersize=12)
            #plt.ylabel('Number of modes')
            plt.ylabel('Probability')
            #plt.xlabel('Modes')
            plt.xlabel('Clusters')
            plt.savefig('NumNumNumNumberOfOccurences_vs_ClassesClusters.png',
                        bbox_inches='tight')
            plt.savefig(
                'NdNikNumNumNumNumberOfOccurences_vs_ClassesClusters.png',
                bbox_inches='tight')

            asdfkfs

            #asdf
            #asdfasf

    asdfasdfasdf

    #sadfz

    #dsafadsf
    #asdfasfasd

    bsz = args.batchSize
    for epoch in range(1, args.epochs + 1):
        for i in range(0, len(X_training), bsz):
            sigma_x = F.softplus(log_sigma).view(1, 1, args.imageSize,
                                                 args.imageSize)

            netD.zero_grad()
            stop = min(bsz, len(X_training[i:]))
            real_cpu = X_training[i:i + stop].to(device)

            batch_size = real_cpu.size(0)
            label = torch.full((batch_size, ), real_label, device=device)

            noise_eta = torch.randn_like(real_cpu)
            noised_data = real_cpu + sigma_x.detach() * noise_eta
            out_real = netD(noised_data)
            errD_real = criterion(out_real, label)
            errD_real.backward()
            D_x = out_real.mean().item()

            # train with fake

            noise = torch.randn(batch_size, args.nz, 1, 1, device=device)
            mu_fake = netG(noise)
            fake = mu_fake + sigma_x * noise_eta
            label.fill_(fake_label)
            out_fake = netD(fake.detach())
            errD_fake = criterion(out_fake, label)
            errD_fake.backward()
            D_G_z1 = out_fake.mean().item()
            errD = errD_real + errD_fake
            optimizerD.step()

            # update G network: maximize log(D(G(z)))

            netG.zero_grad()
            sigma_optimizer.zero_grad()

            label.fill_(real_label)
            gen_input = torch.randn(batch_size, args.nz, 1, 1, device=device)
            out = netG(gen_input)
            noise_eta = torch.randn_like(out)
            g_fake_data = out + noise_eta * sigma_x

            dg_fake_decision = netD(g_fake_data)
            g_error_gan = criterion(dg_fake_decision, label)
            D_G_z2 = dg_fake_decision.mean().item()

            if args.lambda_ == 0:
                g_error_gan.backward()
                optimizerG.step()
                sigma_optimizer.step()

            else:
                hmc_samples, acceptRate, stepsize = hmc.get_samples(
                    netG, g_fake_data.detach(), gen_input.clone(),
                    sigma_x.detach(), args.burn_in, args.num_samples_posterior,
                    args.leapfrog_steps, stepsize, args.flag_adapt,
                    args.hmc_learning_rate, args.hmc_opt_accept)

                bsz, d = hmc_samples.size()
                mean_output = netG(hmc_samples.view(bsz, d, 1, 1).to(device))
                bsz = g_fake_data.size(0)

                mean_output_summed = torch.zeros_like(g_fake_data)
                for cnt in range(args.num_samples_posterior):
                    mean_output_summed = mean_output_summed + mean_output[
                        cnt * bsz:(cnt + 1) * bsz]
                mean_output_summed = mean_output_summed / args.num_samples_posterior

                c = ((g_fake_data - mean_output_summed) / sigma_x**2).detach()
                #g_error_entropy = torch.mul(c, out + sigma_x * noise_eta).mean(0).sum()

                #print(torch.mul(c, out + sigma_x * noise_eta).mean())
                #asdfasdf

                #g_error_entropy = torch.mul(c, out + sigma_x * noise_eta).mean(0).sum()
                g_error_entropy = torch.mul(c, out +
                                            sigma_x * noise_eta).mean(0).sum()

                g_error = g_error_gan - args.lambda_ * g_error_entropy
                g_error.backward()
                optimizerG.step()
                sigma_optimizer.step()

            if args.restrict_sigma:
                log_sigma.data.clamp_(min=logsigma_min, max=logsigma_max)

            ## log performance
            if i % args.log == 0:
                print(
                    'Epoch [%d/%d] .. Batch [%d/%d] .. Loss_D: %.4f .. Loss_G: %.4f .. D(x): %.4f .. D(G(z)): %.4f / %.4f'
                    % (epoch, args.epochs, i, len(X_training), errD.data,
                       g_error_gan.data, D_x, D_G_z1, D_G_z2))

        print('*' * 100)
        print('End of epoch {}'.format(epoch))
        print('sigma min: {} .. sigma max: {}'.format(torch.min(sigma_x),
                                                      torch.max(sigma_x)))
        print('*' * 100)
        if args.lambda_ > 0:
            print(
                '| MCMC diagnostics ====> | stepsize: {} | min ar: {} | mean ar: {} | max ar: {} |'
                .format(stepsize,
                        acceptRate.min().item(),
                        acceptRate.mean().item(),
                        acceptRate.max().item()))

        if epoch % args.save_imgs_every == 0:
            fake = netG(fixed_noise).detach()
            vutils.save_image(fake,
                              '%s/presgan_%s_fake_epoch_%03d.png' %
                              (args.results_folder, args.dataset, epoch),
                              normalize=True,
                              nrow=20)

        if epoch % args.save_ckpt_every == 0:
            torch.save(
                netG.state_dict(),
                os.path.join(
                    args.results_folder,
                    'netG_presgan_%s_epoch_%s.pth' % (args.dataset, epoch)))
            torch.save(
                log_sigma,
                os.path.join(args.results_folder,
                             'log_sigma_%s_%s.pth' % (args.dataset, epoch)))
示例#2
0
def presgan(dat, netG, netD, log_sigma, args):
    device = args.device
    X_training = dat['X_train'].to(device)

    if args.dataset == 'ring':
        generated_samples = []
        fixed_noise = torch.randn(args.num_gen_images, args.nz, device=device)
    else:
        fixed_noise = torch.randn(args.num_gen_images,
                                  args.nz,
                                  1,
                                  1,
                                  device=device)

    optimizerD = optim.Adam(netD.parameters(),
                            lr=args.lrD,
                            betas=(args.beta1, 0.999))
    optimizerG = optim.Adam(netG.parameters(),
                            lr=args.lrG,
                            betas=(args.beta1, 0.999))
    sigma_optimizer = optim.Adam([log_sigma],
                                 lr=args.sigma_lr,
                                 betas=(args.beta1, 0.999))

    if args.restrict_sigma:
        logsigma_min = math.log(math.exp(args.sigma_min) - 1.0)
        logsigma_max = math.log(math.exp(args.sigma_max) - 1.0)

    stepsize = args.stepsize_num / args.nz

    bsz = args.batchSize
    for epoch in range(1, args.epochs + 1):
        for i in range(0, len(X_training), bsz):
            sigma_x = F.softplus(log_sigma).view(1, 1, args.imageSize,
                                                 args.imageSize)

            netD.zero_grad()
            stop = min(bsz, len(X_training[i:]))
            real_cpu = X_training[i:i + stop].to(device)

            batch_size = real_cpu.size(0)
            label = torch.full((batch_size, ), real_label, device=device)

            noise_eta = torch.randn_like(real_cpu)
            noised_data = real_cpu + sigma_x.detach() * noise_eta
            out_real = netD(noised_data)
            errD_real = criterion(out_real, label)
            errD_real.backward()
            D_x = out_real.mean().item()

            # train with fake
            # UGLY FIX ME
            if args.dataset == 'ring':
                noise = torch.randn(batch_size, args.nz, device=device)
            else:
                noise = torch.randn(batch_size, args.nz, 1, 1, device=device)

            mu_fake = netG(noise)
            fake = mu_fake + sigma_x * noise_eta
            label.fill_(fake_label)
            out_fake = netD(fake.detach())
            errD_fake = criterion(out_fake, label)
            errD_fake.backward()
            D_G_z1 = out_fake.mean().item()
            errD = errD_real + errD_fake
            optimizerD.step()

            # update G network: maximize log(D(G(z)))

            netG.zero_grad()
            sigma_optimizer.zero_grad()

            label.fill_(real_label)

            # UGLY FIX ME
            if args.dataset == 'ring':
                gen_input = torch.randn(batch_size, args.nz, device=device)
            else:
                gen_input = torch.randn(batch_size,
                                        args.nz,
                                        1,
                                        1,
                                        device=device)

            out = netG(gen_input)
            noise_eta = torch.randn_like(out)
            g_fake_data = out + noise_eta * sigma_x

            dg_fake_decision = netD(g_fake_data)
            g_error_gan = criterion(dg_fake_decision, label)
            D_G_z2 = dg_fake_decision.mean().item()

            if args.lambda_ == 0:
                g_error_gan.backward()
                optimizerG.step()
                sigma_optimizer.step()

            else:
                hmc_samples, acceptRate, stepsize = hmc.get_samples(
                    netG, g_fake_data.detach(), gen_input.clone(),
                    sigma_x.detach(), args.burn_in, args.num_samples_posterior,
                    args.leapfrog_steps, stepsize, args.flag_adapt,
                    args.hmc_learning_rate, args.hmc_opt_accept)

                bsz, d = hmc_samples.size()
                if args.dataset == 'ring':
                    mean_output = netG(hmc_samples.view(bsz, d).to(device))
                else:
                    mean_output = netG(
                        hmc_samples.view(bsz, d, 1, 1).to(device))

                bsz = g_fake_data.size(0)

                mean_output_summed = torch.zeros_like(g_fake_data)
                for cnt in range(args.num_samples_posterior):
                    mean_output_summed = mean_output_summed + mean_output[
                        cnt * bsz:(cnt + 1) * bsz]
                mean_output_summed = mean_output_summed / args.num_samples_posterior

                c = ((g_fake_data - mean_output_summed) / sigma_x**2).detach()
                g_error_entropy = torch.mul(c, out +
                                            sigma_x * noise_eta).mean(0).sum()

                g_error = g_error_gan - args.lambda_ * g_error_entropy
                g_error.backward()
                optimizerG.step()
                sigma_optimizer.step()

            if args.restrict_sigma:
                log_sigma.data.clamp_(min=logsigma_min, max=logsigma_max)

            # log performance
            if i % args.log == 0:
                print(
                    'Epoch [%d/%d] .. Batch [%d/%d] .. Loss_D: %.4f .. Loss_G: %.4f .. D(x): %.4f .. D(G(z)): %.4f / %.4f'
                    % (epoch, args.epochs, i, len(X_training), errD.data,
                       g_error_gan.data, D_x, D_G_z1, D_G_z2))

        print('*' * 100)
        print('End of epoch {}'.format(epoch))
        print('sigma min: {} .. sigma max: {}'.format(torch.min(sigma_x),
                                                      torch.max(sigma_x)))
        print('*' * 100)
        if args.lambda_ > 0:
            print(
                '| MCMC diagnostics ====> | stepsize: {} | min ar: {} | mean ar: {} | max ar: {} |'
                .format(stepsize,
                        acceptRate.min().item(),
                        acceptRate.mean().item(),
                        acceptRate.max().item()))

        if epoch % args.save_imgs_every == 0:
            fake = netG(fixed_noise).detach()
            vutils.save_image(fake,
                              '%s/presgan_%s_fake_epoch_%03d.png' %
                              (args.results_folder, args.dataset, epoch),
                              normalize=True,
                              nrow=20)

        if epoch % args.save_ckpt_every == 0:
            torch.save(
                netG.state_dict(),
                os.path.join(
                    args.results_folder,
                    'netG_presgan_%s_epoch_%s.pth' % (args.dataset, epoch)))
            torch.save(
                log_sigma,
                os.path.join(args.results_folder,
                             'log_sigma_%s_%s.pth' % (args.dataset, epoch)))

        # Write ring results to disk
        # Generator forward
        if args.dataset == 'ring':
            x_fake = netG(fixed_noise).cpu().detach().numpy()

            generated_samples.append(x_fake)

            fig = plt.figure()
            plt.scatter(x_fake[:, 0], x_fake[:, 1], s=10, c='b', alpha=0.5)

            plt.ylim(-5, 5)
            plt.xlim(-5, 5)
            plt.savefig('output/' + args.model + '_x_fake' + str(epoch) +
                        '.png')
            plt.close(fig)

    # aggregate results
    # visualize all samples
    if args.dataset == 'ring':
        xmax = 5
        cols = len(generated_samples)
        plt.figure(figsize=(2 * cols, 2))
        for i, sample in enumerate(generated_samples):
            if i == 0:
                ax = plt.subplot(1, cols, 1)
            else:
                plt.subplot(1, cols, i + 1, sharex=ax, sharey=ax)
            ax2 = sns.kdeplot(sample[:, 0],
                              sample[:, 1],
                              shaded=True,
                              cmap='Greens',
                              n_levels=20,
                              clip=[[-xmax, xmax]] * 2)
            plt.xticks([])
            plt.yticks([])
            plt.title('step %d' % (i * 1000))

        plt.gcf().tight_layout()
        plt.savefig('output/' + args.model + '_kde.png')
        plt.close()
示例#3
0
def presgan(dat, netG, netD, log_sigma, args):
    writer = SummaryWriter(log_dir='tensorboard' + args.dataset)
    device = args.device
    if torch.cuda.is_available():
        print("cuda")
        netG.cuda()
        netD.cuda()
        criterion.cuda()
        criterion_mse.cuda()
    X_training = dat['X_train'].to(device)  # [60000, 1, 64, 64]
    fixed_noise = torch.randn(args.num_gen_images,
                              args.nz,
                              1,
                              1,
                              device=device)
    torch.manual_seed(123)
    # NEW
    Y_training = dat['Y_train'].to(device)
    # NUM_CLASS = 10
    NUM_CLASS = args.n_classes

    optimizerD = optim.Adam(netD.parameters(),
                            lr=args.lrD,
                            betas=(args.beta1, 0.999))
    optimizerG = optim.Adam(netG.parameters(),
                            lr=args.lrG,
                            betas=(args.beta1, 0.999))
    sigma_optimizer = optim.Adam([log_sigma],
                                 lr=args.sigma_lr,
                                 betas=(args.beta1, 0.999))
    if args.restrict_sigma:
        logsigma_min = math.log(math.exp(args.sigma_min) - 1.0)
        logsigma_max = math.log(math.exp(args.sigma_max) - 1.0)
    #stepsize = args.stepsize_num / args.nz

    #bsz = args.batchSize

    #print(X_training.shape)

    #print(X_training.shape)
    #print(X_training.shape)

    #asdfasdfcscv

    stepsize = args.stepsize_num / args.nz

    Y_forY_training = dat['Y_train'].to(device)

    bsz = args.batchSize

    for epoch in range(1, args.epochs + 1):
        for i in range(0, len(X_training), bsz):
            # sigma_x = F.softplus(log_sigma).view(1, 1, args.imageSize, args.imageSize)

            # sigma_x = F.softplus(log_sigma).view(1, 1, args.imageSize, args.imageSize)
            # sigma_x = F.softplus(log_sigma).view(1, 1, args.imageSize, args.imageSize)

            stop = min(bsz, len(X_training[i:]))
            real_cpu = X_training[i:i + stop].to(device)
            y_real_cpu = Y_forY_training[i:i + stop].to(device)

            for sadgfjasj in range(len(y_real_cpu)):
                if (sadgfjasj > 0) and (y_real_cpu[sadgfjasj] == 2):
                    y_real_cpu[sadgfjasj] = y_real_cpu[sadgfjasj - 1]
                    real_cpu[sadgfjasj, :] = real_cpu[sadgfjasj - 1, :]
                elif (sadgfjasj == 0) and (y_real_cpu[sadgfjasj] == 2):
                    y_real_cpu[sadgfjasj] = y_real_cpu[sadgfjasj + 1]
                    real_cpu[sadgfjasj, :] = real_cpu[sadgfjasj + 1, :]

            X_training[i:i + stop] = real_cpu
            Y_forY_training[i:i + stop] = y_real_cpu

            #sigma_x = F.softplus(log_sigma).view(1, 1, args.imageSize, args.imageSize)

            #sigma_x = F.softplus(log_sigma).view(1, 1, args.imageSize, args.imageSize)
            #sigma_x = F.softplus(log_sigma).view(1, 1, args.imageSize, args.imageSize)

            #sigma_x = F.softplus(log_sigma).view(1, 1, args.imageSize, args.imageSize)
            sigma_x = F.softplus(log_sigma).view(1, 1, args.imageSize,
                                                 args.imageSize)

            netD.zero_grad()
            stop = min(bsz, len(X_training[i:]))
            real_cpu = X_training[i:i + stop].to(device)
            '''
            for epoch in range(1, args.epochs+1):
                for i in range(0, len(X_training), bsz): # bsz = 64
        
                    sigma_x = F.softplus(log_sigma).view(1, 1, args.imageSize, args.imageSize)
        
                    netD.zero_grad()
                    stop = min(bsz, len(X_training[i:]))
                    real_cpu = X_training[i:i+stop].to(device) # [64, 1, 64, 64]
            '''

            batch_size = real_cpu.size(0)
            labelv = torch.full((batch_size, ), real_label).to(device)

            # train discriminator on real (noised) data and real labels
            y_labels = Y_training[i:i + stop].to(device)
            y_one_hot = torch.FloatTensor(batch_size, NUM_CLASS).to(
                device)  # adding cuda here
            # print(batch_size, bsz, y_labels.size())
            y_one_hot = y_one_hot.zero_().scatter_(
                1, y_labels.view(batch_size, 1), 1).to(device)

            noise_eta = torch.randn_like(real_cpu).to(device)
            noised_data = real_cpu + sigma_x.detach() * noise_eta
            out_real = netD(noised_data, y_one_hot)  #, y_one_hot_labels
            errD_real = criterion(out_real, labelv)
            errD_real.backward()
            D_x = out_real.mean().item()

            # make generator output image from random labels; make discriminator classify
            rand_y_one_hot = torch.FloatTensor(
                batch_size, NUM_CLASS).zero_().to(device)  # adding cuda here
            rand_y_one_hot.scatter_(
                1,
                torch.randint(0,
                              NUM_CLASS,
                              size=(batch_size, 1),
                              device=device), 1
            )  # #rand_y_one_hot.scatter_(1, torch.from_numpy(np.random.randint(0, 10, size=(bsz,1))), 1)

            noise = torch.randn(batch_size, args.nz, 1, 1, device=device)
            mu_fake = netG(noise, rand_y_one_hot)
            fake = mu_fake + sigma_x * noise_eta
            labelv = labelv.fill_(fake_label).to(device)
            out_fake = netD(fake.detach(), rand_y_one_hot)
            errD_fake = criterion(out_fake, labelv)
            errD_fake.backward()
            D_G_z1 = out_fake.mean().item()
            errD = errD_real + errD_fake
            optimizerD.step()

            # update G network: maximize log(D(G(z)))

            netG.zero_grad()
            sigma_optimizer.zero_grad()

            rand_y_one_hot = torch.FloatTensor(batch_size,
                                               NUM_CLASS).zero_().to(device)
            rand_y_one_hot = rand_y_one_hot.scatter_(
                1,
                torch.randint(0,
                              NUM_CLASS,
                              size=(batch_size, 1),
                              device=device), 1).to(device)
            labelv = labelv.fill_(real_label).to(device)
            gen_input = torch.randn(batch_size, args.nz, 1, 1, device=device)
            out = netG(gen_input, rand_y_one_hot)  # add rand y labels
            noise_eta = torch.randn_like(out)
            g_fake_data = out + noise_eta * sigma_x

            dg_fake_decision = netD(g_fake_data,
                                    rand_y_one_hot)  # add rand y labels
            g_error_gan = criterion(dg_fake_decision, labelv)
            D_G_z2 = dg_fake_decision.mean().item()

            #             # TO TEST WITHOUT ENTROPY, SET:
            #             if epoch < 10 and args.lambda_ != 0 and args.dataset != 'mnist':
            #                 args.lambda_ = 0
            #             elif epoch < 20 and args.lambda_ != 0 and args.dataset != 'mnist':
            #                 args.lambda_ = 0.0001
            #             elif args.lambda_ != 0 and args.dataset != 'mnist':
            #                 args.lambda_ = 0.0002

            if args.lambda_ == 0:
                g_error_gan.backward()
                optimizerG.step()
                sigma_optimizer.step()

            else:
                # added y_tilde param (rand_y_one_hot)
                hmc_samples, hmc_labels, acceptRate, stepsize = hmc.get_samples(
                    netG, g_fake_data.detach(), rand_y_one_hot.detach(),
                    gen_input.clone(), sigma_x.detach(), args.burn_in,
                    args.num_samples_posterior, args.leapfrog_steps, stepsize,
                    args.flag_adapt, args.hmc_learning_rate,
                    args.hmc_opt_accept)

                bsz, d = hmc_samples.size()
                hmc_samples = hmc_samples.view(bsz, d, 1, 1).to(device)
                hmc_labels = hmc_labels.to(device)
                mean_output = netG(hmc_samples, hmc_labels)
                bsz = g_fake_data.size(0)

                mean_output_summed = torch.zeros_like(g_fake_data).to(device)
                for cnt in range(args.num_samples_posterior):
                    mean_output_summed = mean_output_summed + mean_output[
                        cnt * bsz:(cnt + 1) * bsz]
                mean_output_summed = mean_output_summed / args.num_samples_posterior

                c = ((g_fake_data - mean_output_summed) / sigma_x**2).detach()
                g_error_entropy = torch.mul(c, out +
                                            sigma_x * noise_eta).mean(0).sum()

                g_error = g_error_gan - args.lambda_ * g_error_entropy
                g_error.backward()
                optimizerG.step()
                sigma_optimizer.step()

            if args.restrict_sigma:
                log_sigma.data.clamp_(min=logsigma_min, max=logsigma_max)

            ## log performance
            if i % args.log == 0:
                print(
                    'Epoch [%d/%d] .. Batch [%d/%d] .. Loss_D: %.4f .. Loss_G: %.4f .. D(x): %.4f .. D(G(z)): %.4f / %.4f'
                    % (epoch, args.epochs, i, len(X_training), errD.data,
                       g_error_gan.data, D_x, D_G_z1, D_G_z2))
                with open('%s/log.csv' % args.results_folder, 'a') as f:
                    r = csv.writer(f)
                    # Loss_G, Loss_D, D(x), D(G(z))
                    r.writerow([g_error_gan.data, errD.data, D_x, D_G_z2])

            if i % (2 * args.log) == 0:
                t_iter = (epoch * len(X_training) + i) / bsz
                writer.add_scalar('Loss_G', g_error_gan.data, t_iter)
                writer.add_scalar('Loss_D', errD.data, t_iter)
                writer.add_scalar('D(x)', D_x, t_iter)
                writer.add_scalar('D(G(z))', D_G_z2, t_iter)

        print('*' * 100)
        print('End of epoch {}'.format(epoch))
        print('sigma min: {} .. sigma max: {}'.format(torch.min(sigma_x),
                                                      torch.max(sigma_x)))
        print('*' * 100)
        if args.lambda_ > 0:
            print(
                '| MCMC diagnostics ====> | stepsize: {} | min ar: {} | mean ar: {} | max ar: {} |'
                .format(stepsize,
                        acceptRate.min().item(),
                        acceptRate.mean().item(),
                        acceptRate.max().item()))

        if epoch % args.save_imgs_every == 0:
            rand_y_one_hot = torch.FloatTensor(args.num_gen_images,
                                               NUM_CLASS).zero_().to(
                                                   device)  # adding cuda here
            rand_y_one_hot = rand_y_one_hot.scatter_(
                1,
                torch.randint(0,
                              NUM_CLASS,
                              size=(args.num_gen_images, 1),
                              device=device), 1
            ).to(
                device
            )  # #rand_y_one_hot.scatter_(1, torch.from_numpy(np.random.randint(0, 10, size=(bsz,1))), 1)
            fake = netG(fixed_noise, rand_y_one_hot).detach()

            vutils.save_image(fake,
                              '%s/presgan_%s_fake_epoch_%03d.png' %
                              (args.results_folder, args.dataset, epoch),
                              normalize=True,
                              nrow=20)

        if epoch % args.save_ckpt_every == 0:
            torch.save(
                netG.state_dict(),
                os.path.join(
                    args.results_folder,
                    'netG_presgan_%s_epoch_%s.pth' % (args.dataset, epoch)))
            torch.save(
                log_sigma,
                os.path.join(args.results_folder,
                             'log_sigma_%s_%s.pth' % (args.dataset, epoch)))
            torch.save(
                netD.state_dict(),
                os.path.join(
                    args.results_folder,
                    'netD_presgan_%s_epoch_%s.pth' % (args.dataset, epoch)))
示例#4
0
def presgan(dat, netG, netD, log_sigma, args):
    device = args.device
    X_training = dat['X_train'].to(device)
    fixed_noise = torch.randn(args.num_gen_images, args.nz, 1, 1, device=device)
    optimizerD = optim.Adam(netD.parameters(), lr=args.lrD, betas=(args.beta1, 0.999))
    optimizerG = optim.Adam(netG.parameters(), lr=args.lrG, betas=(args.beta1, 0.999)) 
    sigma_optimizer = optim.Adam([log_sigma], lr=args.sigma_lr, betas=(args.beta1, 0.999))
    if args.restrict_sigma:
        logsigma_min = math.log(math.exp(args.sigma_min) - 1.0)
        logsigma_max = math.log(math.exp(args.sigma_max) - 1.0)
    stepsize = args.stepsize_num / args.nz
    
    bsz = args.batchSize
    for epoch in range(1, args.epochs+1):
        for i in range(0, len(X_training), bsz): 
            sigma_x = F.softplus(log_sigma).view(1, 1, args.imageSize, args.imageSize)

            netD.zero_grad()
            stop = min(bsz, len(X_training[i:]))
            real_cpu = X_training[i:i+stop].to(device)

            batch_size = real_cpu.size(0)
            label = torch.full((batch_size,), real_label, device=device)

            noise_eta = torch.randn_like(real_cpu)
            noised_data = real_cpu + sigma_x.detach() * noise_eta
            out_real = netD(noised_data)
            errD_real = criterion(out_real, label)
            errD_real.backward()
            D_x = out_real.mean().item()

            # train with fake
            
            noise = torch.randn(batch_size, args.nz, 1, 1, device=device)
            mu_fake = netG(noise) 
            fake = mu_fake + sigma_x * noise_eta
            label.fill_(fake_label)
            out_fake = netD(fake.detach())
            errD_fake = criterion(out_fake, label)
            errD_fake.backward()
            D_G_z1 = out_fake.mean().item()
            errD = errD_real + errD_fake
            optimizerD.step()

            # update G network: maximize log(D(G(z)))

            netG.zero_grad()
            sigma_optimizer.zero_grad()

            label.fill_(real_label)  
            gen_input = torch.randn(batch_size, args.nz, 1, 1, device=device)
            out = netG(gen_input)
            noise_eta = torch.randn_like(out)
            g_fake_data = out + noise_eta * sigma_x

            dg_fake_decision = netD(g_fake_data)
            g_error_gan = criterion(dg_fake_decision, label) 
            D_G_z2 = dg_fake_decision.mean().item()

            if args.lambda_ == 0:
                g_error_gan.backward()
                optimizerG.step() 
                sigma_optimizer.step()

            else:
                '''
                hmc_samples, acceptRate, stepsize = hmc.get_samples(
                    netG, real_cpu[0, 0, :, :].detach(), gen_input.clone(), sigma_x.detach(), args.burn_in,
                    args.num_samples_posterior, args.leapfrog_steps, stepsize, args.flag_adapt,
                    args.hmc_learning_rate, args.hmc_opt_accept)

                bsz, d = hmc_samples.size()
                mean_output = netG(hmc_samples.view(bsz, d, 1, 1).to(device))
                bsz = real_cpu[0, 0, :, :].size(0)

                mean_output_summed = torch.zeros_like(real_cpu[0, 0, :, :])
                for cnt in range(args.num_samples_posterior):
                    mean_output_summed = mean_output_summed + mean_output[cnt * bsz:(cnt + 1) * bsz]
                mean_output_summed = mean_output_summed / args.num_samples_posterior

                c = ((real_cpu[0, 0, :, :] - mean_output_summed) / sigma_x ** 2).detach()
                g_error_entropy = torch.mul(c, out + sigma_x * noise_eta).mean()

                print(g_error_entropy)
                adfasdfas
                '''

                '''
                hmc_samples, acceptRate, stepsize = hmc.get_samples(
                    netG, real_cpu[0,0,:,:].detach(), gen_input.clone(), sigma_x.detach(), args.burn_in,
                    args.num_samples_posterior, args.leapfrog_steps, stepsize, args.flag_adapt,
                    args.hmc_learning_rate, args.hmc_opt_accept)

                bsz, d = hmc_samples.size()
                mean_output = netG(hmc_samples.view(bsz, d, 1, 1).to(device))
                bsz = real_cpu[0,0,:,:].size(0)

                mean_output_summed = torch.zeros_like(real_cpu[0,0,:,:])
                for cnt in range(args.num_samples_posterior):
                    mean_output_summed = mean_output_summed + mean_output[cnt * bsz:(cnt + 1) * bsz]
                mean_output_summed = mean_output_summed / args.num_samples_posterior

                c = ((real_cpu[0,0,:,:] - mean_output_summed) / sigma_x ** 2).detach()
                g_error_entropy = torch.mul(c, out + sigma_x * noise_eta).mean(0).sum()

                print(g_error_entropy)
                adfasdfas
                '''

                #hmc_samples, acceptRate, stepsize = hmc.get_samples(
                #    netG, g_fake_data.detach(), gen_input.clone(), sigma_x.detach(), args.burn_in,
                #    args.num_samples_posterior, args.leapfrog_steps, stepsize, args.flag_adapt,
                #    args.hmc_learning_rate, args.hmc_opt_accept)

                #hmc_samples, acceptRate, stepsize = hmc.get_samples(
                #    netG, real_cpu.detach()[0,0,:,:], gen_input.clone(), sigma_x.detach(), args.burn_in,
                #    args.num_samples_posterior, args.leapfrog_steps, stepsize, args.flag_adapt,
                #    args.hmc_learning_rate, args.hmc_opt_accept)

                #hmc_samples, acceptRate, stepsize = hmc.get_samples(
                #    netG, g_fake_data.detach(), gen_input.clone(), sigma_x.detach(), args.burn_in,
                #    args.num_samples_posterior, args.leapfrog_steps, stepsize, args.flag_adapt,
                #    args.hmc_learning_rate, args.hmc_opt_accept)

                #hmc_samples, acceptRate, stepsize = hmc.get_samples(
                #    netG, real_cpu.detach(), gen_input.clone(), sigma_x.detach(), args.burn_in,
                #    args.num_samples_posterior, args.leapfrog_steps, stepsize, args.flag_adapt,
                #    args.hmc_learning_rate, args.hmc_opt_accept)

                '''
                hmc_samples, acceptRate, stepsize = hmc.get_samples(
                    netG, g_fake_data.detach(), gen_input.clone(), sigma_x.detach(), args.burn_in, 
                        args.num_samples_posterior, args.leapfrog_steps, stepsize, args.flag_adapt, 
                            args.hmc_learning_rate, args.hmc_opt_accept)
                '''

                #hmc_samples, acceptRate, stepsize = hmc.get_samples(
                #    netG, g_fake_data.detach(), gen_input.clone(), sigma_x.detach(), args.burn_in,
                #    args.num_samples_posterior, args.leapfrog_steps, stepsize, args.flag_adapt,
                #    args.hmc_learning_rate, args.hmc_opt_accept)

                #hmc_samples, acceptRate, stepsize = hmc.get_samples(
                #    netG, real_cpu.detach(), gen_input.clone(), sigma_x.detach(), args.burn_in,
                #    args.num_samples_posterior, args.leapfrog_steps, stepsize, args.flag_adapt,
                #    args.hmc_learning_rate, args.hmc_opt_accept)
                
                #print(hmc_samples.sum())
                #asdfasd

                #import matplotlib.pyplot as plt
                #plt.imshow(real_cpu[0, 0, :, :].detach().cpu())
                #plt.show())

                #hmc_samples, acceptRate, stepsize = hmc.get_samples(
                #    netG, real_cpu[0,0,:,:].detach(), gen_input.clone(), sigma_x.detach(), args.burn_in,
                #    args.num_samples_posterior, args.leapfrog_steps, stepsize, args.flag_adapt,
                #    args.hmc_learning_rate, args.hmc_opt_accept)

                #asdfas

                hmc_samples, acceptRate, stepsize = hmc.get_samples(
                    netG, g_fake_data.detach(), gen_input.clone(), sigma_x.detach(), args.burn_in,
                    args.num_samples_posterior, args.leapfrog_steps, stepsize, args.flag_adapt,
                    args.hmc_learning_rate, args.hmc_opt_accept)

                bsz, d = hmc_samples.size()
                mean_output = netG(hmc_samples.view(bsz, d, 1, 1).to(device))
                bsz = g_fake_data.size(0)

                mean_output_summed = torch.zeros_like(g_fake_data)
                for cnt in range(args.num_samples_posterior):
                    mean_output_summed = mean_output_summed + mean_output[cnt*bsz:(cnt+1)*bsz]
                mean_output_summed = mean_output_summed / args.num_samples_posterior  

                c = ((g_fake_data - mean_output_summed) / sigma_x**2).detach()
                g_error_entropy = torch.mul(c, out + sigma_x * noise_eta).mean(0).sum()

                #print(real_cpu.shape)
                #print(g_fake_data.shape)

                #asdfasdfs
                #print('')

                #print(g_error_entropy.item())
                #print(torch.exp(-g_error_entropy).item())

                #print('')

                #print(g_error_entropy)
                #adfasdfas

                # accept.float().mean()
                # use: accept.float().mean()

                g_error = g_error_gan - args.lambda_ * g_error_entropy
                g_error.backward()
                optimizerG.step() 
                sigma_optimizer.step()



                '''
                # print(real_cpu.detach().shape)
                # print(real_cpu.detach()[0,0,:,:].squeeze().shape)

                # import matplotlib.pyplot as plt
                # plt.imshow(real_cpu.detach()[0,0,:,:].squeeze().cpu())

                # plt.show()

                hmc_samples, acceptRate, stepsize = hmc.get_samples(
                    netG, g_fake_data.detach(), gen_input.clone(), sigma_x.detach(), args.burn_in,
                    args.num_samples_posterior, args.leapfrog_steps, stepsize, args.flag_adapt,
                    args.hmc_learning_rate, args.hmc_opt_accept)

                bsz, d = hmc_samples.size()
                mean_output = netG(hmc_samples.view(bsz, d, 1, 1).to(device))
                bsz = g_fake_data.size(0)

                mean_output_summed = torch.zeros_like(g_fake_data)
                for cnt in range(args.num_samples_posterior):
                    mean_output_summed = mean_output_summed + mean_output[cnt * bsz:(cnt + 1) * bsz]
                mean_output_summed = mean_output_summed / args.num_samples_posterior

                c = ((g_fake_data - mean_output_summed) / sigma_x ** 2).detach()
                g_error_entropy = torch.mul(c, out + sigma_x * noise_eta).mean(0).sum()

                # print(real_cpu.shape)
                # print(g_fake_data.shape)

                # asdfasdfs
                # print('')

                #print(g_error_entropy.item())
                #print(torch.exp(-g_error_entropy).item())

                print(g_error_entropy)
                print(g_error_entropy.item())

                sadfasdf
                '''

                '''
                #print(real_cpu.detach().shape)
                #print(real_cpu.detach()[0,0,:,:].squeeze().shape)

                #import matplotlib.pyplot as plt
                #plt.imshow(real_cpu.detach()[0,0,:,:].squeeze().cpu())

                #plt.show()

                hmc_samples, acceptRate, stepsize = hmc.get_samples(
                    netG, real_cpu.detach()[0,0,:,:], gen_input.clone(), sigma_x.detach(), args.burn_in,
                    args.num_samples_posterior, args.leapfrog_steps, stepsize, args.flag_adapt,
                    args.hmc_learning_rate, args.hmc_opt_accept)

                bsz, d = hmc_samples.size()
                mean_output = netG(hmc_samples.view(bsz, d, 1, 1).to(device))
                bsz = g_fake_data.size(0)

                mean_output_summed = torch.zeros_like(g_fake_data)
                for cnt in range(args.num_samples_posterior):
                    mean_output_summed = mean_output_summed + mean_output[cnt * bsz:(cnt + 1) * bsz]
                mean_output_summed = mean_output_summed / args.num_samples_posterior

                c = ((g_fake_data - mean_output_summed) / sigma_x ** 2).detach()
                g_error_entropy = torch.mul(c, out + sigma_x * noise_eta).mean(0).sum()

                # print(real_cpu.shape)
                # print(g_fake_data.shape)

                # asdfasdfs
                # print('')

                print(g_error_entropy.item())
                print(torch.exp(-g_error_entropy).item())
                '''



                """
                #hmc_samples, acceptRate, stepsize = hmc.get_samples(
                #    netG, g_fake_data.detach(), gen_input.clone(), sigma_x.detach(), args.burn_in,
                #    args.num_samples_posterior, args.leapfrog_steps, stepsize, args.flag_adapt,
                #    args.hmc_learning_rate, args.hmc_opt_accept)

                # hmc_samples, acceptRate, stepsize = hmc.get_samples(
                #    netG, g_fake_data.detach(), gen_input.clone(), sigma_x.detach(), args.burn_in,
                #    args.num_samples_posterior, args.leapfrog_steps, stepsize, args.flag_adapt,
                #    args.hmc_learning_rate, args.hmc_opt_accept)

                hmc_samples, acceptRate, stepsize = hmc.get_samples(
                   netG, real_cpu.detach(), gen_input.clone(), sigma_x.detach(), args.burn_in,
                   args.num_samples_posterior, args.leapfrog_steps, stepsize, args.flag_adapt,
                   args.hmc_learning_rate, args.hmc_opt_accept)

                bsz, d = hmc_samples.size()
                mean_output = netG(hmc_samples.view(bsz, d, 1, 1).to(device))
                bsz = g_fake_data.size(0)

                mean_output_summed = torch.zeros_like(g_fake_data)
                for cnt in range(args.num_samples_posterior):
                    mean_output_summed = mean_output_summed + mean_output[cnt * bsz:(cnt + 1) * bsz]
                mean_output_summed = mean_output_summed / args.num_samples_posterior

                c = ((g_fake_data - mean_output_summed) / sigma_x ** 2).detach()
                g_error_entropy = torch.mul(c, out + sigma_x * noise_eta).mean(0).sum()

                # print(real_cpu.shape)
                # print(g_fake_data.shape)

                # asdfasdfs
                # print('')

                print(g_error_entropy.item())
                print(torch.exp(-g_error_entropy).item())
                """

            if args.restrict_sigma:
                log_sigma.data.clamp_(min=logsigma_min, max=logsigma_max)

            ## log performance
            if i % args.log == 0:
                print('Epoch [%d/%d] .. Batch [%d/%d] .. Loss_D: %.4f .. Loss_G: %.4f .. D(x): %.4f .. D(G(z)): %.4f / %.4f'
                        % (epoch, args.epochs, i, len(X_training), errD.data, g_error_gan.data, D_x, D_G_z1, D_G_z2))

        print('*'*100)
        print('End of epoch {}'.format(epoch))
        print('sigma min: {} .. sigma max: {}'.format(torch.min(sigma_x), torch.max(sigma_x)))
        print('*'*100)
        if args.lambda_ > 0:
            print('| MCMC diagnostics ====> | stepsize: {} | min ar: {} | mean ar: {} | max ar: {} |'.format(
                        stepsize, acceptRate.min().item(), acceptRate.mean().item(), acceptRate.max().item()))

        if epoch % args.save_imgs_every == 0:
            fake = netG(fixed_noise).detach()
            vutils.save_image(fake, '%s/presgan_%s_fake_epoch_%03d.png' % (args.results_folder, args.dataset, epoch), normalize=True, nrow=20) 

        if epoch % args.save_ckpt_every == 0:
            #torch.save(netG.state_dict(), os.path.join(args.results_folder, 'netG_presgan_%s_epoch_%s.pth'%(args.dataset, epoch)))

            #torch.save(netG.state_dict(),
            #           os.path.join(args.results_folder, 'netG_presgan_%s_epoch_%s.pth' % (args.dataset, epoch)))

            torch.save(netG.module.state_dict(),
                       os.path.join(args.results_folder, 'netG_presgan_%s_epoch_%s.pth' % (args.dataset, epoch)))

            #torch.save(netD.state_dict(),
            #           os.path.join(args.results_folder, 'netD_presgan_%s_epoch_%s.pth' % (args.dataset, epoch)))

            torch.save(netD.module.state_dict(),
                       os.path.join(args.results_folder, 'netD_presgan_%s_epoch_%s.pth' % (args.dataset, epoch)))

            torch.save(log_sigma, os.path.join(args.results_folder, 'log_sigma_%s_%s.pth'%(args.dataset, epoch)))
示例#5
0
def presgan(dat, netG, netD, log_sigma, args):

    saving_dataframe = pd.DataFrame(columns=[
        'dataset', 'epoch', 'elapsed_time', 'loss_d', 'loss_g', 'd(x)',
        'd(g(z))', 'sigma_min', 'sigma_max'
    ])

    start_time = time.time()

    device = args.device
    X_training = dat['X_train'].to(device)
    fixed_noise = torch.randn(args.num_gen_images,
                              args.nz,
                              1,
                              1,
                              device=device)
    optimizerD = optim.Adam(netD.parameters(),
                            lr=args.lrD,
                            betas=(args.beta1, 0.999))
    optimizerG = optim.Adam(netG.parameters(),
                            lr=args.lrG,
                            betas=(args.beta1, 0.999))
    sigma_optimizer = optim.Adam([log_sigma],
                                 lr=args.sigma_lr,
                                 betas=(args.beta1, 0.999))
    if args.restrict_sigma:
        logsigma_min = math.log(math.exp(args.sigma_min) - 1.0)
        logsigma_max = math.log(math.exp(args.sigma_max) - 1.0)
    stepsize = args.stepsize_num / args.nz

    times_array = []
    bsz = args.batchSize
    for epoch in range(args.starting_epoch, args.epochs + 1):
        starting = time.time()
        for i in range(0, len(X_training), bsz):
            sigma_x = F.softplus(log_sigma).view(1, 1, args.imageSize,
                                                 args.imageSize)

            netD.zero_grad()
            stop = min(bsz, len(X_training[i:]))
            real_cpu = X_training[i:i + stop].to(device)

            batch_size = real_cpu.size(0)
            label = torch.full((batch_size, ),
                               real_label,
                               device=device,
                               dtype=torch.float32)

            noise_eta = torch.randn_like(real_cpu)
            noised_data = real_cpu + sigma_x.detach() * noise_eta
            out_real = netD(noised_data)
            errD_real = criterion(out_real, label)
            errD_real.backward()
            D_x = out_real.mean().item()

            # train with fake

            noise = torch.randn(batch_size, args.nz, 1, 1, device=device)
            mu_fake = netG(noise)
            fake = mu_fake + sigma_x * noise_eta
            label.fill_(fake_label)
            out_fake = netD(fake.detach())
            errD_fake = criterion(out_fake, label)
            errD_fake.backward()
            D_G_z1 = out_fake.mean().item()
            errD = errD_real + errD_fake
            optimizerD.step()

            # update G network: maximize log(D(G(z)))

            netG.zero_grad()
            sigma_optimizer.zero_grad()

            label.fill_(real_label)
            gen_input = torch.randn(batch_size, args.nz, 1, 1, device=device)
            out = netG(gen_input)
            noise_eta = torch.randn_like(out)
            g_fake_data = out + noise_eta * sigma_x

            dg_fake_decision = netD(g_fake_data)
            g_error_gan = criterion(dg_fake_decision, label)
            D_G_z2 = dg_fake_decision.mean().item()

            if args.lambda_ == 0:
                g_error_gan.backward()
                optimizerG.step()
                sigma_optimizer.step()

            else:
                hmc_samples, acceptRate, stepsize = hmc.get_samples(
                    netG, g_fake_data.detach(), gen_input.clone(),
                    sigma_x.detach(), args.burn_in, args.num_samples_posterior,
                    args.leapfrog_steps, stepsize, args.flag_adapt,
                    args.hmc_learning_rate, args.hmc_opt_accept)

                bsz, d = hmc_samples.size()
                mean_output = netG(hmc_samples.view(bsz, d, 1, 1).to(device))
                bsz = g_fake_data.size(0)

                mean_output_summed = torch.zeros_like(g_fake_data)
                for cnt in range(args.num_samples_posterior):
                    mean_output_summed = mean_output_summed + mean_output[
                        cnt * bsz:(cnt + 1) * bsz]
                mean_output_summed = mean_output_summed / args.num_samples_posterior

                c = ((g_fake_data - mean_output_summed) / sigma_x**2).detach()
                g_error_entropy = torch.mul(c, out +
                                            sigma_x * noise_eta).mean(0).sum()

                g_error = g_error_gan - args.lambda_ * g_error_entropy
                g_error.backward()
                optimizerG.step()
                sigma_optimizer.step()

            if args.restrict_sigma:
                log_sigma.data.clamp_(min=logsigma_min, max=logsigma_max)

            ## log performance
            if i % args.log == 0:
                print(
                    'Epoch [%d/%d] .. Batch [%d/%d] .. Loss_D: %.4f .. Loss_G: %.4f .. D(x): %.4f .. D(G(z)): %.4f / %.4f'
                    % (epoch, args.epochs, i, len(X_training), errD.data,
                       g_error_gan.data, D_x, D_G_z1, D_G_z2))

        print('*' * 100)
        print('End of epoch {}'.format(epoch))
        print('sigma min: {} .. sigma max: {}'.format(torch.min(sigma_x),
                                                      torch.max(sigma_x)))
        print('*' * 100)
        if args.lambda_ > 0:
            print(
                '| MCMC diagnostics ====> | stepsize: {} | min ar: {} | mean ar: {} | max ar: {} |'
                .format(stepsize,
                        acceptRate.min().item(),
                        acceptRate.mean().item(),
                        acceptRate.max().item()))

        if epoch % args.save_imgs_every == 0:
            fake = netG(fixed_noise).detach()
            path_to_imgs = args.results_folder + '/epoch' + str(epoch)
            if not os.path.exists(path_to_imgs):
                os.makedirs(path_to_imgs)
            # old
            # vutils.save_image(fake, '%s/presgan_%s_fake_epoch_%03d.png' % (args.results_folder, args.dataset, epoch), normalize=True, nrow=20)
            for i in range(fake.size(0)):
                vutils.save_image(fake[i, :, :, :],
                                  '%s/presgan_%s_fake_epoch_%03d_img%03d.png' %
                                  (path_to_imgs, args.dataset, epoch, i),
                                  normalize=True)

        if epoch % args.save_ckpt_every == 0:
            torch.save(
                netG.state_dict(),
                os.path.join(
                    args.results_folder,
                    'netG_presgan_%s_epoch_%s.pth' % (args.dataset, epoch)))
            torch.save(
                netD.state_dict(),
                os.path.join(
                    args.results_folder,
                    'netD_presgan_%s_epoch_%s.pth' % (args.dataset, epoch)))
            torch.save(
                log_sigma,
                os.path.join(args.results_folder,
                             'log_sigma_%s_%s.pth' % (args.dataset, epoch)))
        ending = time.time() - starting
        df_row = [
            args.dataset, epoch, ending, errD.data, g_error_gan.data, D_x,
            str(D_G_z1) + "/" + str(D_G_z2),
            torch.min(sigma_x),
            torch.max(sigma_x)
        ]
        saving_dataframe.loc[epoch] = df_row

    saving_dataframe.to_csv("presgan_data.csv", index=False)
    elapsed_time = time.time() - start_time
    print("Time elapse for {} epochs".format(args.epochs))
    print(time.strftime("%H:%M:%S", time.gmtime(elapsed_time)))