def main():

    r = np.genfromtxt('datasets/RawData_third.csv',
                      delimiter=',',
                      names=True,
                      case_sensitive=True,
                      dtype='int')
    t = np.genfromtxt('datasets/RawData_time_third.csv',
                      delimiter=',',
                      names=True,
                      case_sensitive=True,
                      dtype='float')
    obs1 = np.zeros((r['Behaviours__1'].size, 37), dtype='int')
    obs_time1 = np.zeros((t['Time__1'].size, 37), dtype='float')
    n = obs1[:, 0].size
    obs = np.zeros((n, 37), dtype='int')
    obs.fill(-1)
    obs_time = np.zeros((n, 37), dtype='float')
    animalID = np.zeros(n, int)
    targetID = np.zeros(n, int)
    for ro in range(obs1[:, 0].size):
        for col in range(36):
            obs[ro][col] = r[ro][col + 5]

    for row in range(obs[:, 0].size):
        for col in range(36):
            if (obs[row][col] == -1):
                obs[row][col] = 9

    for row in range(obs_time1[:, 0].size):
        for col in range(36):
            obs_time[row][col] = t[row][col + 5]

    for row in range(obs[:, 0].size):
        animalID[row] = r[row][0]
        targetID[row] = r[row][4]

    pos = 0
    count = 0
    e = 0
    group1 = np.zeros(27, float)
    group2 = np.zeros(27, float)
    g1 = 0
    g2 = 0
    plot_val = np.arange(27)
    error_matrix = np.zeros(54, dtype='float')
    with open('Results/MPS_per_AnimalID_250_90.csv', 'w') as csvfile:
        fieldnames = ['AnimalID', 'TargetID', 'PATH']
        writer = csv.DictWriter(csvfile, fieldnames=fieldnames)
        writer.writeheader()
        while pos != obs[:, 0].size:
            g = 0
            obs_set = np.zeros((12, 37), dtype='int')
            obs_time_set = np.zeros((12, 37), dtype='float')
            obs_set.fill(-1)
            for i in range(pos, pos + 12):
                for j in range(36):
                    obs_set[i - pos][j] = obs[i][j]
                    obs_time_set[i - pos][j] = obs_time[i][j]
            T = obs_set[0].shape[0]
            num_states = 9
            trans_mat = hmm_train.trans_prob_matrix(obs_set)
            trans_mat = np.log(trans_mat)
            emi_mat_norm = hmm_train.emission_prob_matrix(obs_set)
            emi_mat_norm[:, 36] = 0
            emi_mat = np.log(emi_mat_norm)
            emi_mat_time = hmm_train.emission_prob_matrix_time(
                obs_set, obs_time_set)
            emi_mat_time[:, 36] = 0
            emi_mat_time = np.log(emi_mat_time)
            path_set = np.empty(T, dtype='int')
            path_set.fill(-1)
            for t in range(T):
                if (emi_mat_norm[8, t] > 0.8):
                    path_set[t] = -2
                elif (emi_mat_norm[8, t] > 0.7 and emi_mat_norm[8, t] < 0.8):
                    for s in range(num_states - 1):
                        path_set[t] = np.argmax(emi_mat[:, t] +
                                                trans_mat[:, s])
                elif (emi_mat_norm[8, t] > 0.5 and emi_mat_norm[8, t] < 0.7):
                    for s in range(num_states - 1):
                        path_set[t] = np.argmin(emi_mat[:, t - 1] +
                                                trans_mat[s, s])
                else:
                    for s in range(num_states - 1):
                        path_set[t] = np.argmax(emi_mat[:, t - 1] +
                                                trans_mat[s, s] +
                                                emi_mat_time[:, t])

            path_set[36] = -2
            writer.writerow({
                'AnimalID': str(animalID[pos]),
                'TargetID': str(targetID[pos]),
                'PATH': str(path_set + 1)
            })
            '''for r in range(37):
                if(path_set[r]+1==-1):
                    g = g+1
            if(targetID[pos]==1):
                val = (36-g)/36
                group1[g1] = val
                g1 = g1 + 1
            if(targetID[pos]==2):
                val = (36-g)/36
                group2[g2] = val
                g2 = g2 + 1'''
            pos = pos + 12
def main():

    # Reading csv data file and retreiving content in variables.

    r = np.genfromtxt('datasets/RawData_third.csv',
                      delimiter=',',
                      names=True,
                      case_sensitive=True,
                      dtype='int')
    t = np.genfromtxt('datasets/RawData_time_third.csv',
                      delimiter=',',
                      names=True,
                      case_sensitive=True,
                      dtype='float')

    #Declaring variables for size and storing particular data needed in analysis

    obs1 = np.zeros((r['Behaviours__1'].size, 37), dtype='int')
    obs_time1 = np.zeros((t['Time__1'].size, 37), dtype='float')

    # Setting total size of observation sequences.
    # Declaring observation sequence variables.

    n = obs1[:, 0].size
    obs = np.zeros((n, 37), dtype='int')
    obs.fill(-1)
    obs_time = np.zeros((n, 37), dtype='float')
    T = obs[0].shape[0]
    num_states = 9

    #Populating observation sequence variables using data from four datasets.

    for ro in range(obs1[:, 0].size):
        for col in range(36):
            obs[ro][col] = r[ro][col + 5]

    for row in range(obs[:, 0].size):
        for col in range(36):
            if (obs[row][col] == -1):
                obs[row][col] = 9

    for row in range(obs_time1[:, 0].size):
        for col in range(36):
            obs_time[row][col] = t[row][col + 5]

    # Training model based on observation sequence

    #Calculating transition probability matrix based on observation

    trans_mat_norm = hmm_train.trans_prob_matrix(obs)
    trans_mat = np.log(trans_mat_norm)

    #Calculating Emission probability matrix for model

    emi_mat_norm = hmm_train.emission_prob_matrix(obs)
    emi_mat_norm[:, 36] = 0
    emi_mat = np.log(emi_mat_norm)

    # Calculating Average time for model
    emi_mat_time_norm = hmm_train.emission_prob_matrix_time(obs, obs_time)
    emi_mat_time = np.log(emi_mat_time_norm)
    emi_mat_time[:, 36] = 0

    #All the values for transition, emission and average have log applied
    #to them to avoid float underflow as probability values sometimes go very low

    # Declaring variable to store most probable state sequence

    path = np.empty(T, dtype='int')
    path.fill(-1)

    # Looping over complete observation sequence for all the states to get most
    #probable state sequence

    for t in range(T):
        if (emi_mat_norm[8, t] > 0.8):
            path[t] = -2
        elif (emi_mat_norm[8, t] > 0.7 and emi_mat_norm[8, t] < 0.8):
            for s in range(num_states - 1):
                path[t] = np.argmax(emi_mat[:, t] + trans_mat[:, s])
        elif (emi_mat_norm[8, t] > 0.5 and emi_mat_norm[8, t] < 0.7):
            for s in range(num_states - 1):
                path[t] = np.argmin(emi_mat[:, t - 1] + trans_mat[s, s])
        else:
            for s in range(num_states - 1):
                path[t] = np.argmax(emi_mat[:, t - 1] + trans_mat[s, s] +
                                    emi_mat_time[:, t])

    path[36] = -2

    print('==================== MOST PROBABLE STATE SEQUENCE ================')
    print(path + 1)
    print('==================================================================')
    return (path + 1)
示例#3
0
def main():
    r = np.genfromtxt('datasets/RawData_first.csv',delimiter=',', names=True,case_sensitive=True,dtype = 'int')
    r2 = np.genfromtxt('datasets/RawData_second.csv',delimiter=',', names=True,case_sensitive=True,dtype = 'int')
    r3 = np.genfromtxt('datasets/RawData_third.csv',delimiter=',', names=True,case_sensitive=True,dtype = 'int')
    r4 = np.genfromtxt('datasets/RawData_fourth.csv',delimiter=',', names=True,case_sensitive=True,dtype = 'int')
    t = np.genfromtxt('datasets/RawData_time_first.csv',delimiter=',', names=True,case_sensitive=True,dtype = 'float')
    t2 = np.genfromtxt('datasets/RawData_time_second.csv',delimiter=',', names=True,case_sensitive=True,dtype = 'float')
    t3 = np.genfromtxt('datasets/RawData_time_third.csv',delimiter=',', names=True,case_sensitive=True,dtype = 'float')
    t4 = np.genfromtxt('datasets/RawData_time_fourth.csv',delimiter=',', names=True,case_sensitive=True,dtype = 'float')
    obs1 = np.zeros((r['Behaviours__1'].size,37),dtype='int')
    obs1.fill(-1)
    obs2 = np.zeros((r2['Behaviours__1'].size,37),dtype='int')
    obs2.fill(-1)
    obs3 = np.zeros((r3['Behaviours__1'].size,37),dtype='int')
    obs3.fill(-1)
    obs4 = np.zeros((r4['Behaviours__1'].size,37),dtype='int')
    obs4.fill(-1)
    obs_time1 = np.zeros((t['Time__1'].size,37),dtype='float')
    obs_time2 = np.zeros((t2['Time__1'].size,37),dtype='float')
    obs_time3 = np.zeros((t3['Time__1'].size,37),dtype='float')
    obs_time4 = np.zeros((t4['Time__1'].size,37),dtype='float')
    animalID = np.zeros(obs1[:,0].size, int)
    targetID = np.zeros(obs1[:,0].size, int)
    for ro in range(obs1[:,0].size):
        for col in range(36):
            obs1[ro][col] = r[ro][col+5]

    
    for row in range(obs2[:,0].size):
        for col in range(36):
            obs2[row][col] = r2[row][col+5]

    for row in range(obs3[:,0].size):
        for col in range(36):
            obs3[row][col] = r3[row][col+5]

    for row in range(obs4[:,0].size):
        for col in range(36):
            obs4[row][col] = r4[row][col+5]
    for row in range(obs1[:,0].size):
        animalID[row] = r[row][0]
        targetID[row] = r[row][4]

    for row in range(obs1[:,0].size):
        for col in range(36):
            if(obs1[row][col]== -1):
                obs1[row][col] = 9
            if(obs2[row][col]== -1):
                obs1[row][col] = 9
            if(obs3[row][col]== -1):
                obs1[row][col] = 9
            if(obs4[row][col]== -1):
                obs1[row][col] = 9


    for row in range(obs_time1[:,0].size):
        for col in range(36):
            obs_time1[row][col] = t[row][col+5]

    
    for row in range(obs_time2[:,0].size):
        for col in range(36):
            obs_time2[row][col] = t2[row][col+5]

    for row in range(obs_time3[:,0].size):
        for col in range(36):
            obs_time3[row][col] = t3[row][col+5]

    for row in range(obs_time4[:,0].size):
        for col in range(36):
            obs_time4[row][col] = t4[row][col+5]


    pos = 0
    error_matrix = np.zeros(54, dtype = 'float')
    e=0
    group1 = np.zeros(27, float)
    group2 = np.zeros(27, float)
    g1=0
    g2=0
    plot_val = np.arange(27)
    with open('Results/MPS_per_AnimalID_all_Datasets.csv','w') as csvfile:
        fieldnames = ['AnimalID','TargetID','PATH']
        writer = csv.DictWriter(csvfile, fieldnames=fieldnames)
        writer.writeheader()
        while pos!= obs1[:,0].size:
            g = 0
            obs_set = np.zeros((48,37), dtype = 'int')
            obs_time_set = np.zeros((48,37), dtype='float')
            obs_set.fill(-1)
            for i in range(pos, pos+12):
                for j in range(36):
                    obs_set[i-pos][j] = obs1[i][j]
                    obs_set[(i-pos)+12][j] = obs2[i][j]
                    obs_set[(i-pos)+24][j] = obs3[i][j]
                    obs_set[(i-pos)+36][j] = obs4[i][j]
                    obs_time_set[i-pos][j] = obs_time1[i][j]
                    obs_time_set[(i-pos)+12][j] = obs_time2[i][j]
                    obs_time_set[(i-pos)+24][j] = obs_time3[i][j]
                    obs_time_set[(i-pos)+36][j] = obs_time4[i][j]
    
            T = obs_set[0].shape[0]
            num_states = 9
            trans_mat = hmm_train.trans_prob_matrix(obs_set)
            trans_mat = np.log(trans_mat)
            emi_mat_norm = hmm_train.emission_prob_matrix(obs_set)
            emi_mat_norm[:,36] = 0
            emi_mat = np.log(emi_mat_norm)
            emi_mat_time = hmm_train.emission_prob_matrix_time(obs_set, obs_time_set)
            emi_mat_time[:,36] = 0
            emi_mat_time = np.log(emi_mat_time)
            path_set = np.empty(T, dtype='int')
            path_set.fill(-1)
            for t in range(T):
                if(emi_mat_norm[8, t] > 0.8):
                    path_set[t] = -2
                elif(emi_mat_norm[8, t] > 0.7 and emi_mat_norm[8, t] < 0.8):
                    for s in range(num_states-1):
                        path_set[t] = np.argmax(emi_mat[:,t] + trans_mat[:, s])
                elif(emi_mat_norm[8, t] > 0.5 and emi_mat_norm[8, t] < 0.7):
                    for s in range(num_states-1):
                        path_set[t] = np.argmin(emi_mat[:,t-1] + trans_mat[s, s])
                else:
                    for s in range(num_states-1):
                        path_set[t] = np.argmax(emi_mat[:,t-1] + trans_mat[s,s] + emi_mat_time[:,t])

            path_set[36] = -2
            writer.writerow({'AnimalID' : str(animalID[pos]), 'TargetID' : str(targetID[pos]), 'PATH' : str(path_set+1)})
            for r in range(37):
                if(path_set[r]+1==-1):
                    g = g+1
            if(targetID[pos]==1):
                val = (36-g)/36
                group1[g1] = val
                g1 = g1 + 1
            if(targetID[pos]==2):
                val = (36-g)/36
                group2[g2] = val
                g2 = g2 + 1

            pos = pos+12

    plt.plot(plot_val, group1,'r',label="group1")
    plt.plot(plot_val, group2, 'b', label="group2")
    plt.legend(('group1', 'group2'))
    plt.show()
示例#4
0
def main():

    r = np.genfromtxt('datasets/RawData_fourth.csv',
                      delimiter=',',
                      names=True,
                      case_sensitive=True,
                      dtype='int')
    t = np.genfromtxt('datasets/RawData_time_fourth.csv',
                      delimiter=',',
                      names=True,
                      case_sensitive=True,
                      dtype='float')
    obs1 = np.zeros((r['Behaviours__1'].size, 37), dtype='int')
    obs_time1 = np.zeros((t['Time__1'].size, 37), dtype='float')

    n = obs1[:, 0].size
    m = int(n / 2)
    obs = np.zeros((m, 37), dtype='int')
    obsg2 = np.zeros((m, 37), int)
    obs.fill(-1)
    obsg2.fill(-1)
    obs_time = np.zeros((m, 37), dtype='float')
    obsg2_time = np.zeros((m, 37), float)
    T = obs[0].shape[0]
    num_states = 9

    for ro in range(m):
        for col in range(36):
            obs[ro][col] = r[ro][col + 5]

    for ro in range(m, n):
        for col in range(36):
            obsg2[ro - m][col] = r[ro][col + 5]

    for row in range(obs[:, 0].size):
        for col in range(36):
            if (obs[row][col] == -1):
                obs[row][col] = 9
            if (obsg2[row][col] == -1):
                obsg2[row][col] = 9

    for row in range(m):
        for col in range(36):
            obs_time[row][col] = t[row][col + 5]

    for row in range(m, n):
        for col in range(36):
            obsg2_time[row - m][col] = t[row][col + 5]

    trans_mat_norm1 = hmm_train.trans_prob_matrix(obs)
    trans_mat1 = np.log(trans_mat_norm1)
    emi_mat_norm1 = hmm_train.emission_prob_matrix(obs)
    emi_mat_norm1[:, 36] = 0
    emi_mat1 = np.log(emi_mat_norm1)
    emi_mat_time_norm1 = hmm_train.emission_prob_matrix_time(obs, obs_time)
    emi_mat_time1 = np.log(emi_mat_time_norm1)
    emi_mat_time1[:, 36] = 0

    trans_mat_norm2 = hmm_train.trans_prob_matrix(obsg2)
    trans_mat2 = np.log(trans_mat_norm2)
    emi_mat_norm2 = hmm_train.emission_prob_matrix(obsg2)
    emi_mat_norm2[:, 36] = 0
    emi_mat2 = np.log(emi_mat_norm2)
    emi_mat_time_norm2 = hmm_train.emission_prob_matrix_time(obsg2, obsg2_time)
    emi_mat_time2 = np.log(emi_mat_time_norm2)
    emi_mat_time2[:, 36] = 0

    path1 = np.empty(T, dtype='int')
    path1.fill(-1)
    path2 = np.empty(T, dtype='int')
    path2.fill(-1)

    for t in range(T):
        if (emi_mat_norm1[8, t] > 0.8):
            path1[t] = -2
        elif (emi_mat_norm1[8, t] > 0.7 and emi_mat_norm1[8, t] < 0.8):
            for s in range(num_states - 1):
                path1[t] = np.argmax(emi_mat1[:, t] + trans_mat1[:, s])
        elif (emi_mat_norm1[8, t] > 0.5 and emi_mat_norm1[8, t] < 0.7):
            for s in range(num_states - 1):
                path1[t] = np.argmin(emi_mat1[:, t - 1] + trans_mat1[s, s])
        else:
            for s in range(num_states - 1):
                path1[t] = np.argmax(emi_mat1[:, t - 1] + trans_mat1[s, s] +
                                     emi_mat_time1[:, t])

    for t in range(T):
        if (emi_mat_norm2[8, t] > 0.8):
            path2[t] = -2
        elif (emi_mat_norm2[8, t] > 0.7 and emi_mat_norm2[8, t] < 0.8):
            for s in range(num_states - 1):
                path2[t] = np.argmax(emi_mat2[:, t] + trans_mat2[:, s])
        elif (emi_mat_norm2[8, t] > 0.5 and emi_mat_norm2[8, t] < 0.7):
            for s in range(num_states - 1):
                path2[t] = np.argmin(emi_mat2[:, t - 1] + trans_mat2[s, s])
        else:
            for s in range(num_states - 1):
                path2[t] = np.argmax(emi_mat2[:, t - 1] + trans_mat2[s, s] +
                                     emi_mat_time2[:, t])

    for i in range(37):
        if (path1[i] == 8):
            path1[i] = -2
        if (path2[i] == 8):
            path2[i] = -2

    path1[36] = -2
    path2[36] = -2
    count1 = 0
    count2 = 0
    for i in range(37):
        if (path1[i] + 1 == -1):
            count1 = count1 + 1

    for i in range(37):
        if (path2[i] + 1 == -1):
            count2 = count2 + 1

    count1 = float((36 - count1) / 36)
    count2 = float((36 - count2) / 36)

    print('=============== MOST PROBABLE STATE SEQUENCE =================')
    print('MPS Group1 : ', path1 + 1)
    print('==============================================================')
    print('MPS Group2 : ', path2 + 1)
    print('==============================================================')
    return count1, count2, path1 + 1, path2 + 1
示例#5
0
def main():

    #Getting data from csv file and extracting in variables

    r = np.genfromtxt('datasets/RawData_first.csv',delimiter=',', names=True,case_sensitive=True,dtype = 'int')
    r2 = np.genfromtxt('datasets/RawData_second.csv',delimiter=',', names=True,case_sensitive=True,dtype = 'int')
    r3 = np.genfromtxt('datasets/RawData_third.csv',delimiter=',', names=True,case_sensitive=True,dtype = 'int')
    r4 = np.genfromtxt('datasets/RawData_fourth.csv',delimiter=',', names=True,case_sensitive=True,dtype = 'int')
    t = np.genfromtxt('datasets/RawData_time_first.csv',delimiter=',', names=True,case_sensitive=True,dtype = 'float')
    t2 = np.genfromtxt('datasets/RawData_time_second.csv',delimiter=',', names=True,case_sensitive=True,dtype = 'float')
    t3 = np.genfromtxt('datasets/RawData_time_third.csv',delimiter=',', names=True,case_sensitive=True,dtype = 'float')
    t4 = np.genfromtxt('datasets/RawData_time_fourth.csv',delimiter=',', names=True,case_sensitive=True,dtype = 'float')
    
    #defining observation sequences

    obs1 = np.zeros((r['Behaviours__1'].size,37),dtype='int')
    obs2 = np.zeros((r2['Behaviours__1'].size,37),dtype='int')
    obs3 = np.zeros((r3['Behaviours__1'].size,37),dtype='int')
    obs4 = np.zeros((r4['Behaviours__1'].size,37),dtype='int')
    obs_time1 = np.zeros((t['Time__1'].size,37),dtype='float')
    obs_time2 = np.zeros((t2['Time__1'].size,37),dtype='float')
    obs_time3 = np.zeros((t3['Time__1'].size,37),dtype='float')
    obs_time4 = np.zeros((t4['Time__1'].size,37),dtype='float')

    #defining arrays for AnimalID and TargetID and TrialNo.
 
    animalID = np.zeros(obs1[:,0].size, int)
    targetID = np.zeros(obs1[:,0].size, int)
    trialNo = np.zeros(obs1[:,0].size, int)

    #Populating Observation sequence
    
    for ro in range(obs1[:,0].size):
        for col in range(36):
            obs1[ro][col] = r[ro][col+5]

    
    for row in range(obs2[:,0].size):
        for col in range(36):
            obs2[row][col] = r2[row][col+5]

    for row in range(obs3[:,0].size):
        for col in range(36):
            obs3[row][col] = r3[row][col+5]

    for row in range(obs4[:,0].size):
        for col in range(36):
            obs4[row][col] = r4[row][col+5]
    for row in range(obs1[:,0].size):
        animalID[row] = r[row][0]
        targetID[row] = r[row][4]
        trialNo[row] = r[row][2]

    for row in range(obs1[:,0].size):
        for col in range(36):
            if(obs1[row][col]== -1):
                obs1[row][col] = 9
            if(obs2[row][col]== -1):
                obs1[row][col] = 9
            if(obs3[row][col]== -1):
                obs1[row][col] = 9
            if(obs4[row][col]== -1):
                obs1[row][col] = 9

    #Populating observtion time sequence

    for row in range(obs_time1[:,0].size):
        for col in range(36):
            obs_time1[row][col] = t[row][col+5]

    
    for row in range(obs_time2[:,0].size):
        for col in range(36):
            obs_time2[row][col] = t2[row][col+5]

    for row in range(obs_time3[:,0].size):
        for col in range(36):
            obs_time3[row][col] = t3[row][col+5]

    for row in range(obs_time4[:,0].size):
        for col in range(36):
            obs_time4[row][col] = t4[row][col+5]


    pos = 0
    error_matrix = np.zeros(54, dtype = 'float')
    e=0
    group1 = np.zeros((8,12), int)
    group2 = np.zeros((8,12), int)
    g1=0
    g2=0
    plot_val = np.arange(27)

    #loops to write in csv file and simulatneously train and get most probable sequence
    
    with open('Results/MPS_each_trial_all_Datasets.csv','w') as csvfile:
        fieldnames = ['AnimalID','TrialNo.','TargetID','PATH']
        writer = csv.DictWriter(csvfile, fieldnames=fieldnames)
        writer.writeheader()
        while pos!= obs1[:,0].size:
            g = 0
            obs_set = np.zeros((4,37), dtype = 'int')
            obs_time_set = np.zeros((4,37), dtype='float')
            obs_set.fill(-1)
            for j in range(36):
                obs_set[0][j] = obs1[pos][j]
                obs_set[1][j] = obs2[pos][j]
                obs_set[2][j] = obs3[pos][j]
                obs_set[3][j] = obs4[pos][j]
                obs_time_set[0][j] = obs_time1[pos][j]
                obs_time_set[1][j] = obs_time2[pos][j]
                obs_time_set[2][j] = obs_time3[pos][j]
                obs_time_set[3][j] = obs_time4[pos][j]
                
            T = obs_set[0].shape[0]
            num_states = 9
            trans_mat = hmm_train.trans_prob_matrix(obs_set)
            trans_mat = np.log(trans_mat)
            emi_mat_norm = hmm_train.emission_prob_matrix(obs_set)
            emi_mat_norm[:,36] = 0
            emi_mat = np.log(emi_mat_norm)
            emi_mat_time = hmm_train.emission_prob_matrix_time(obs_set, obs_time_set)
            emi_mat_time[:,36] = 0
            emi_mat_time = np.log(emi_mat_time)
            path_set = np.empty(T, dtype='int')
            path_set.fill(-1)
            for t in range(T):
                if(emi_mat_norm[8, t] > 0.8):
                    path_set[t] = -2
                elif(emi_mat_norm[8, t] > 0.7 and emi_mat_norm[8, t] < 0.8):
                    for s in range(num_states-1):
                        path_set[t] = np.argmax(emi_mat[:,t] + trans_mat[:, s])
                elif(emi_mat_norm[8, t] > 0.5 and emi_mat_norm[8, t] < 0.7):
                    for s in range(num_states-1):
                        path_set[t] = np.argmin(emi_mat[:,t-1] + trans_mat[s, s])
                else:
                    for s in range(num_states-1):
                        path_set[t] = np.argmax(emi_mat[:,t-1] + trans_mat[s,s] + emi_mat_time[:,t])

            path_set[36] = -2
            writer.writerow({'AnimalID' : str(animalID[pos]),'TrialNo.' : str(trialNo[pos]), 'TargetID' : str(targetID[pos]), 'PATH' : str(path_set+1)})
    
            if(targetID[pos]==1):
                 for i in range(37):
                     if(path_set[i] >= 0):
                         group1[path_set[i]][trialNo[pos]-1] = group1[path_set[i]][trialNo[pos]-1] + 1 
            if(targetID[pos]==2):
                for i in range(37):
                     if(path_set[i] >= 0):
                         group2[path_set[i]][trialNo[pos]-1] = group2[path_set[i]][trialNo[pos]-1] + 1
 


            pos = pos+1
    
 
    return group1, group2