class KijkoSmitTest(unittest.TestCase): def setUp(self): """ This generates a catalogue to be used for the regression. """ # Generates a data set assuming b=1 self.dmag = 0.1 mext = np.arange(4.0, 7.01, 0.1) self.mval = mext[0:-1] + self.dmag / 2.0 self.bval = 1.0 numobs = np.flipud(np.diff(np.flipud(10.0**(-self.bval * mext + 7.0)))) # Define completeness window numobs[0:6] *= 10 numobs[6:13] *= 20 numobs[13:22] *= 50 numobs[22:] *= 100 compl = np.array([[1900, 1950, 1980, 1990], [6.34, 5.44, 4.74, 3.0]]) self.compl = np.flipud(compl.transpose()) numobs = np.around(numobs) magnitude = np.zeros((np.sum(numobs))) year = np.zeros((np.sum(numobs))) * 1999 lidx = 0 for mag, nobs in zip(self.mval, numobs): uidx = int(lidx + nobs) magnitude[lidx:uidx] = mag + 0.01 year_low = compl[0, np.min(np.nonzero(compl[1, :] < mag)[0])] year[lidx:uidx] = (year_low + np.random.rand(uidx - lidx) * (2000 - year_low)) lidx = uidx self.catalogue = Catalogue.make_from_dict({ 'magnitude': magnitude, 'year': year }) self.ks_ml = KijkoSmit() self.config = {'Average Type': 'Weighted'} def test_kijko_smit_maximum_likelihood(self): """ Tests that the computed b value corresponds to the same value used to generate the test data set """ bval, sigma_b, aval, sigma_a = self.ks_ml.calculate( self.catalogue, self.config, self.compl) print bval, sigma_b self.assertAlmostEqual(self.bval, bval, 1) def test_kijko_smit_set_reference_magnitude(self): completeness_table = np.array([[1900, 1.0]]) catalogue = Catalogue.make_from_dict({ 'magnitude': np.array([5.0, 6.0]), 'year': np.array([2000, 2000]) }) config = {'reference_magnitude': 0.0} self.ks_ml.calculate(catalogue, config, completeness_table)
class KijkoSmitTest(unittest.TestCase): def setUp(self): """ This generates a catalogue to be used for the regression. """ # Generates a data set assuming b=1 self.dmag = 0.1 mext = np.arange(4.0,7.01,0.1) self.mval = mext[0:-1] + self.dmag / 2.0 self.bval = 1.0 numobs = np.flipud(np.diff(np.flipud(10.0**(-self.bval*mext+7.0)))) # Define completeness window numobs[0:6] *= 10 numobs[6:13] *= 20 numobs[13:22] *= 50 numobs[22:] *= 100 compl = np.array([[1900, 1950, 1980, 1990], [6.34, 5.44, 4.74, 3.0]]) self.compl = np.flipud(compl.transpose()) numobs = np.around(numobs) magnitude = np.zeros(int(np.sum(numobs))) year = np.zeros(int(np.sum(numobs))) * 1999 lidx = 0 for mag, nobs in zip(self.mval, numobs): uidx = int(lidx+nobs) magnitude[lidx:uidx] = mag + 0.01 year_low = compl[0, np.min(np.nonzero(compl[1, :] < mag)[0])] year[lidx:uidx] = (year_low + np.random.rand(uidx-lidx) * (2000-year_low)) lidx = uidx self.catalogue = Catalogue.make_from_dict( {'magnitude': magnitude, 'year': year}) self.ks_ml = KijkoSmit() self.config = {'Average Type': 'Weighted'} def test_kijko_smit_maximum_likelihood(self): """ Tests that the computed b value corresponds to the same value used to generate the test data set """ bval, sigma_b, aval, sigma_a = self.ks_ml.calculate( self.catalogue, self.config, self.compl) print(bval, sigma_b) self.assertAlmostEqual(self.bval, bval, 1) def test_kijko_smit_set_reference_magnitude(self): completeness_table = np.array([[1900, 1.0]]) catalogue = Catalogue.make_from_dict( {'magnitude': np.array([5.0, 6.0]), 'year': np.array([2000, 2000])}) config = {'reference_magnitude': 0.0} self.ks_ml.calculate(catalogue, config, completeness_table)
# In[ ]: # Set up the configuration parameters bwc_recurrence = Weichert() bval, sigmab, seismicity_rate, sigma_rate = bwc_recurrence.calculate(catalogue, recurrence_config, completeness_table) print 'B-value = %9.4f +/- %9.4f' %(bval, sigmab) print 'Rate = %9.4f +/- %9.4f' %(seismicity_rate, sigma_rate) # In[ ]: # In[ ]: # Set up the configuration parameters bks_recurrence = KijkoSmit() bval, sigmab, seismicity_rate, sigma_rate = bks_recurrence.calculate(catalogue, recurrence_config, completeness_table) print 'B-value = %9.4f +/- %9.4f' % (bval, sigmab) print 'Rate (M >= 4.0) = %9.4f +/- %9.4f' % (seismicity_rate, sigma_rate)
bml_recurrence = BMaxLikelihood() bval, sigmab, seismicity_rate, sigma_rate = bml_recurrence.calculate( catalogue, recurrence_config, completeness_table) print 'B-value = %9.4f +/- %9.4f' % (bval, sigmab) print 'Rate = %9.4f +/- %9.4f' % (seismicity_rate, sigma_rate) # In[ ]: # Set up the configuration parameters bwc_recurrence = Weichert() bval, sigmab, seismicity_rate, sigma_rate = bwc_recurrence.calculate( catalogue, recurrence_config, completeness_table) print 'B-value = %9.4f +/- %9.4f' % (bval, sigmab) print 'Rate = %9.4f +/- %9.4f' % (seismicity_rate, sigma_rate) # In[ ]: # In[ ]: # Set up the configuration parameters bks_recurrence = KijkoSmit() bval, sigmab, seismicity_rate, sigma_rate = bks_recurrence.calculate( catalogue, recurrence_config, completeness_table) print 'B-value = %9.4f +/- %9.4f' % (bval, sigmab) print 'Rate (M >= 4.0) = %9.4f +/- %9.4f' % (seismicity_rate, sigma_rate)