def test_gridmatrix_overlaid_batched(self): ds = Dataset((['A']*5+['B']*5, np.random.rand(10), np.random.rand(10)), kdims=['a', 'b', 'c']) gmatrix = gridmatrix(ds.groupby('a', container_type=NdOverlay)) plot = bokeh_renderer.get_plot(gmatrix) sp1 = plot.subplots[('b', 'c')] self.assertEqual(sp1.state.xaxis[0].visible, False) self.assertEqual(sp1.state.yaxis[0].visible, True) sp2 = plot.subplots[('b', 'b')] self.assertEqual(sp2.state.xaxis[0].visible, True) self.assertEqual(sp2.state.yaxis[0].visible, True) sp3 = plot.subplots[('c', 'b')] self.assertEqual(sp3.state.xaxis[0].visible, True) self.assertEqual(sp3.state.yaxis[0].visible, False) sp4 = plot.subplots[('c', 'c')] self.assertEqual(sp4.state.xaxis[0].visible, False) self.assertEqual(sp4.state.yaxis[0].visible, False)
def test_grid_shared_source_synced_update(self): hmap = HoloMap({ i: Dataset({chr(65 + j): np.random.rand(i + 2) for j in range(4)}, kdims=['A', 'B', 'C', 'D']) for i in range(3) }) # Create two holomaps of points sharing the same data source hmap1 = hmap.map(lambda x: Points(x.clone(kdims=['A', 'B'])), Dataset) hmap2 = hmap.map(lambda x: Points(x.clone(kdims=['D', 'C'])), Dataset) # Pop key (1,) for one of the HoloMaps and make GridSpace hmap2.pop(1) grid = GridSpace({ 0: hmap1, 2: hmap2 }, kdims=['X']).opts(plot=dict(shared_datasource=True)) # Get plot plot = bokeh_renderer.get_plot(grid) # Check plot created shared data source and recorded expected columns sources = plot.handles.get('shared_sources', []) source_cols = plot.handles.get('source_cols', {}) self.assertEqual(len(sources), 1) source = sources[0] data = source.data cols = source_cols[id(source)] self.assertEqual(set(cols), {'A', 'B', 'C', 'D'}) # Ensure the source contains the expected columns self.assertEqual(set(data.keys()), {'A', 'B', 'C', 'D'}) # Update to key (1,) and check the source contains data # corresponding to hmap1 and filled in NaNs for hmap2, # which was popped above plot.update((1, )) self.assertEqual(data['A'], hmap1[1].dimension_values(0)) self.assertEqual(data['B'], hmap1[1].dimension_values(1)) self.assertEqual(data['C'], np.full_like(hmap1[1].dimension_values(0), np.NaN)) self.assertEqual(data['D'], np.full_like(hmap1[1].dimension_values(0), np.NaN))
def test_nongeographic_conversion(self): converted = Dataset(self.cube).to.curve(['longitude']) self.assertTrue(isinstance(converted, HoloMap)) self.assertEqual(converted.kdims, ['latitude']) self.assertTrue(isinstance(converted.last, Curve))
def test_geographic_conversion(self): self.assertEqual(Dataset(self.cube).to.image(), Image(self.cube))
def test_is_geographic_2d(self): self.assertTrue( is_geographic(Dataset(self.cube), ['longitude', 'latitude']))
def test_is_geographic_1d(self): self.assertFalse(is_geographic(Dataset(self.cube), ['longitude']))