示例#1
0
    def _process(self, overlay, key=None):
        if len(overlay) != 2:
            raise Exception("colorizeHSV required an overlay of two Image elements as input.")
        if (len(overlay[0].value_dimensions), len(overlay[1].value_dimensions)) != (1,1):
            raise Exception("Each Image element must have single value dimension.")
        if overlay[0].shape != overlay[1].shape:
            raise Exception("Mismatch in the shapes of the data in the Image elements.")


        hue = overlay[1]
        Hdim = hue.value_dimensions[0]
        H = hue.clone(hue.data.copy(),
                      value_dimensions=[Hdim(cyclic=True, range=hue.range(Hdim.name))])

        normfn = raster_normalization.instance()
        if self.p.input_ranges:
            S = normfn.process_element(overlay[0], key, *self.p.input_ranges)
        else:
            S = normfn.process_element(overlay[0], key)

        C = Image(np.ones(hue.data.shape),
                  bounds=self.get_overlay_bounds(overlay), group='F', label='G')

        C.value_dimensions[0].range = (0,1)
        S.value_dimensions[0].range = (0,1)
        return HSV(H * C * S).relabel(group=self.p.group)
示例#2
0
    def _process(self, overlay, key=None):
        if len(overlay) != 2:
            raise Exception(
                "colorizeHSV required an overlay of two Image elements as input."
            )
        if (len(overlay.get(0).vdims), len(overlay.get(1).vdims)) != (1, 1):
            raise Exception(
                "Each Image element must have single value dimension.")
        if overlay.get(0).shape != overlay.get(1).shape:
            raise Exception(
                "Mismatch in the shapes of the data in the Image elements.")

        hue = overlay.get(1)
        Hdim = hue.vdims[0]
        H = hue.clone(hue.data.copy(),
                      vdims=[Hdim(cyclic=True, range=hue.range(Hdim.name))])

        normfn = raster_normalization.instance()
        if self.p.input_ranges:
            S = normfn.process_element(overlay.get(0), key,
                                       *self.p.input_ranges)
        else:
            S = normfn.process_element(overlay.get(0), key)

        C = Image(np.ones(hue.data.shape),
                  bounds=self.get_overlay_bounds(overlay),
                  group='F',
                  label='G')

        C.vdims[0].range = (0, 1)
        S.vdims[0].range = (0, 1)
        return HSV(H * C * S).relabel(group=self.p.group)
示例#3
0
    def _process(self, overlay, key=None):

        normfn = raster_normalization.instance()
        if self.p.input_ranges:
            overlay = normfn.process_element(overlay, key, *self.p.input_ranges)
        else:
            overlay = normfn.process_element(overlay, key)

        hue, confidence = overlay.get(0), overlay.get(1)
        strength_data = overlay.get(2).data if (len(overlay) == 3) else np.ones(hue.shape)

        hue_data = hue.data
        hue_range = hue.value_dimensions[0].range
        if (not hue.value_dimensions[0].cyclic) or (None in hue_range):
             raise Exception("The input hue channel must be declared cyclic with a defined range.")
        if hue.shape != confidence.shape:
            raise Exception("Cannot combine input Matrices with different shapes.")

        (h,s,v)= (hue_data,
                  (confidence.data * self.p.C_multiplier).clip(0.0, 1.0),
                  (strength_data * self.p.S_multiplier).clip(0.0, 1.0))

        if self.p.flipSC:
            (h,s,v) = (h,v,s.clip(0,1.0))

        return RGB(np.dstack(hsv_to_rgb(h,s,v)),
                   bounds = self.get_overlay_bounds(overlay),
                   label =  self.get_overlay_label(overlay),
                   group =  self.p.group)
示例#4
0
    def _process(self, matrix, key=None):
        normfn = raster_normalization.instance()
        if self.p.input_ranges:
            matrix = normfn.process_element(matrix, key, *self.p.input_ranges)
        else:
            matrix = normfn.process_element(matrix, key)

        fft_spectrum = abs(np.fft.fftshift(np.fft.fft2(matrix.data - 0.5, s=None, axes=(-2, -1))))
        fft_spectrum = 1 - fft_spectrum # Inverted spectrum by convention
        zero_min_spectrum = fft_spectrum - fft_spectrum.min()
        spectrum_range = fft_spectrum.max() - fft_spectrum.min()
        spectrum = (self.p.max_power * zero_min_spectrum) / spectrum_range

        l, b, r, t = matrix.bounds.lbrt()
        density = matrix.xdensity
        bounds = BoundingBox(radius=(density/2)/(r-l))

        return Image(spectrum, bounds=bounds, label=matrix.label, group=self.p.group)
示例#5
0
    def _process(self, overlay, key=None):

        if len(overlay) != 2:
            raise Exception("The similarity index may only be computed"
                            "using overlays of Image Views.")

        mat1, mat2 = overlay.get(0), overlay.get(1)
        val_dims = [mat1.value_dimensions, mat2.value_dimensions]

        if tuple(len(el) for el in val_dims) != (1,1):
            raise Exception("Both input Matrices must have single value dimension.")
        if False in [val_dims[0][0].cyclic, val_dims[1][0].cyclic]:
            raise Exception("Both input Matrices must be defined as cyclic.")

        normfn = raster_normalization.instance()
        overlay = normfn.process_element(overlay, key)

        return Image(self.difference(overlay.get(0).data, overlay.get(1).data),
                     bounds=self.get_overlay_bounds(overlay),
                     group=self.p.value)