示例#1
0
 def plot_landscape(data):
     X, x, y, xlim, ylim = data
     mesh = holoviews.Bivariate(X)
     scatter = holoviews.Scatter((x, y))
     contour_mesh = mesh * scatter
     return contour_mesh.redim(
         x=holoviews.Dimension("x", range=xlim),
         y=holoviews.Dimension("y", range=ylim),
     )
示例#2
0
 def plot_landscape(data):
     """Plot the walkers distribution overlaying a histogram on a bivariate plot."""
     X, x, y, xlim, ylim = data
     mesh = holoviews.Bivariate(X)
     scatter = holoviews.Scatter((x, y))
     contour_mesh = mesh * scatter
     return contour_mesh.redim(
         x=holoviews.Dimension("x", range=xlim),
         y=holoviews.Dimension("y", range=ylim),
     )
示例#3
0
 def bivariate(data):
     return holoviews.Bivariate(data, *args, **kwargs)
示例#4
0
def _scatter(adata,
             x,
             y,
             condition,
             by=None,
             subsample='datashade',
             steps=40,
             keep_frac=0.2,
             seed=None,
             legend_loc='top_right',
             size=4,
             xlabel=None,
             ylabel=None,
             title=None,
             use_raw=True,
             hover=None,
             hover_width=10,
             hover_height=10,
             kde=None,
             density=None,
             density_size=150,
             jitter=None,
             perc=None,
             xlim=None,
             ylim=None,
             cmap=None,
             show_legend=True,
             plot_height=400,
             plot_width=400):

    _sentinel = object()

    def create_density_plots(df, density, kdims, cmap):
        cm = {}
        if density == 'all':
            dfs = {_sentinel: df}
        elif density == 'group':
            if 'z' not in df.columns:
                warnings.warn(
                    f'`density=\'groups\' was specified, but no group found. Did you specify `color=...`?'
                )
                dfs = {_sentinel: df}
            elif not is_categorical(df['z']):
                warnings.warn(
                    f'`density=\'groups\' was specified, but column `{condition}` is not categorical.'
                )
                dfs = {_sentinel: df}
            else:
                dfs = {k: v for k, v in df.groupby('z')}
                cm = cmap
        else:
            raise ValueError(
                f'Invalid `density` type: \'`{density}`\'. Possible values are `\'all\'`, `\'group\'`.'
            )
        # assumes x, y order in kdims
        return [
            hv.Overlay([
                hv.Distribution(df, kdims=dim).opts(color=cm.get(k, 'black'),
                                                    framewise=True)
                for k, df in dfs.items()
            ]) for dim in kdims
        ]

    assert keep_frac >= 0 and keep_frac <= 1, f'`keep_perc` must be in interval `[0, 1]`, got `{keep_frac}`.'

    adata_mraw = get_mraw(adata, use_raw)

    if subsample == 'uniform':
        cb_kwargs = {'steps': steps}
    elif subsample == 'density':
        cb_kwargs = {'size': int(keep_frac * adata.n_obs), 'seed': seed}
    else:
        cb_kwargs = {}

    categorical = False
    if condition is None:
        cmap = ['black'] * len(x) if subsample == 'datashade' else 'black'
    elif is_categorical(condition):
        categorical = True
        cmap = Sets1to3 if cmap is None else cmap
        cmap = odict(
            zip(condition.cat.categories, adata.uns.get(f'{by}_colors', cmap)))
    else:
        cmap = Viridis256 if cmap is None else cmap

    jitter_x, jitter_y = None, None
    if isinstance(jitter, (tuple, list)):
        assert len(
            jitter
        ) == 2, f'`jitter` must be of length `2`, found `{len(jitter)}`.'
        jitter_x, jitter_y = jitter
    elif jitter is not None:
        jitter_x, jitter_y = jitter, jitter

    if jitter_x is not None:
        x += np.random.normal(0, jitter_x, size=x.shape)
    if jitter_y is not None:
        y += np.random.normal(0, jitter_y, size=y.shape)

    data = {'x': x, 'y': y, 'z': condition}
    vdims = ['z']

    hovertool = None
    if hover is not None:
        for k, dt in hover.items():
            vdims.append(k)
            data[k] = dt
        hovertool = HoverTool(
            tooltips=[(key.capitalize(), f'@{key}') for key in (
                ['index'] if subsample == 'datashade' else hover.keys())])

    data = pd.DataFrame(data)
    if categorical:
        data['z'] = data['z'].astype('category')

    if not vdims:
        vdims = None

    if xlim is None:
        xlim = pad(*minmax(x))
    if ylim is None:
        ylim = pad(*minmax(y))

    kdims = [('x', 'x' if xlabel is None else xlabel),
             ('y', 'y' if ylabel is None else ylabel)]

    scatter = hv.Scatter(data, kdims=kdims, vdims=vdims).sort('z')
    scatter = scatter.opts(size=size, xlim=xlim, ylim=ylim)

    kde_plot= None if kde is None else \
            hv.Bivariate(scatter).opts(bandwidth=kde, show_legend=False, line_width=2)
    xdist, ydist = (None, None) if density is None else create_density_plots(
        data, density, kdims, cmap)

    if categorical:
        scatter = scatter.opts(cmap=cmap,
                               color='z',
                               show_legend=show_legend,
                               legend_position=legend_loc)
    elif 'z' in data:
        scatter = scatter.opts(cmap=cmap,
                               color='z',
                               clim=tuple(map(float, minmax(data['z'], perc))),
                               colorbar=True,
                               colorbar_opts={'width': 20})
    else:
        scatter = scatter.opts(color='black')

    legend = None
    if subsample == 'datashade':
        subsampled = dynspread(datashade(
            scatter,
            aggregator=(ds.count_cat('z') if categorical else ds.mean('z'))
            if vdims is not None else None,
            color_key=cmap,
            cmap=cmap,
            streams=[hv.streams.RangeXY(transient=True), hv.streams.PlotSize],
            min_alpha=255).opts(axiswise=True, framewise=True),
                               threshold=0.8,
                               max_px=5)
        if show_legend and categorical:
            legend = hv.NdOverlay({
                k: hv.Points([0, 0], label=str(k)).opts(size=0, color=v)
                for k, v in cmap.items()
            })
        if hover is not None:
            t = hv.util.Dynamic(rasterize(scatter, width=hover_width, height=hover_height, streams=[hv.streams.RangeXY],
                                          aggregator=ds.reductions.min('index')), operation=hv.QuadMesh)\
                                              .opts(tools=[hovertool], axiswise=True, framewise=True,
                                                    alpha=0, hover_alpha=0.25,
                                                    height=plot_height, width=plot_width)
            scatter = t * subsampled
        else:
            scatter = subsampled

    elif subsample == 'decimate':
        scatter = decimate(scatter,
                           max_samples=int(adata.n_obs * keep_frac),
                           streams=[hv.streams.RangeXY(transient=True)],
                           random_seed=seed)

    if legend is not None:
        scatter = (scatter * legend).opts(legend_position=legend_loc)

    if kde_plot is not None:
        scatter *= kde_plot

    scatter = scatter.opts(height=plot_height, width=plot_width)
    scatter = scatter.opts(hv.opts.Scatter(
        tools=[hovertool])) if hovertool is not None else scatter

    if xdist is not None and ydist is not None:
        scatter = (scatter << ydist.opts(width=density_size)) << xdist.opts(
            height=density_size)

    return scatter.opts(title=title if title is not None else '')
sns.plt.xlim(-122.425, -122.250)
sns.plt.ylim(47.5, 47.8)

sns.scatterplot(x='X', y='Y', hue='SEVERITYCODE', data=data[np.logical_not(data.SEVERITYCODE.isin(['0', '1']))])

severity1 = data[data.SEVERITYCODE.isin(['1','2','2b','3'])]
severity2 = data[data.SEVERITYCODE.isin(['2','2b','3'])]
severity3 = data[data.SEVERITYCODE.isin(['3'])]

sns.kdeplot(data=severity3.X, data2=severity3.Y, cmap='Reds', shade=True, bw=0.15)

import holoviews as hv
from holoviews import opts, Cycle
hv.extension('bokeh')

hv.Bivariate(severity3[['X','Y']])

normal = np.random.randn(100,2)

sns.jointplot("X", "Y", data=data, kind="kde")

##########
# GEOPLOTTING
#########

shapefile = geopandas.read_file(fp)

def add_basemap(ax, zoom, url='http://tile.stamen.com/terrain/tileZ/tileX/tileY.png'):
    xmin, xmax, ymin, ymax = ax.axis()
    basemap, extent = ctx.bounds2img(xmin, ymin, xmax, ymax, zoom=zoom, url=url)
    ax.imshow(basemap, extent=extent, interpolation='bilinear')