示例#1
0
def main():
    if args.distributed:
        init_distributed()

    model = se_resnet50(num_classes=1000)

    optimizer = optim.SGD(lr=0.6 / 1024 * args.batch_size,
                          momentum=0.9, weight_decay=1e-4)
    scheduler = lr_scheduler.MultiStepLR([50, 70])
    train_loader, test_loader = imagenet_loaders(args.root, args.batch_size, distributed=args.distributed,
                                                 num_train_samples=args.batch_size * 10 if args.debug else None,
                                                 num_test_samples=args.batch_size * 10 if args.debug else None)

    c = [callbacks.AccuracyCallback(), callbacks.AccuracyCallback(k=5),
         callbacks.LossCallback(),
         callbacks.WeightSave('.'),
         reporters.TensorboardReporter('.'),
         reporters.TQDMReporter(range(args.epochs))]

    with SupervisedTrainer(model, optimizer, F.cross_entropy,
                           callbacks=c,
                           scheduler=scheduler,
                           ) as trainer:
        for _ in c[-1]:
            trainer.train(train_loader)
            trainer.test(test_loader)
示例#2
0
def main():
    model = {
        "resnet20": resnet20,
        "wrn28_10": wrn28_10
    }[args.model](num_classes=10)
    weight_decay = {"resnet20": 1e-4, "wrn28_10": 5e-4}[args.model]
    lr_decay = {"resnet20": 0.1, "wrn28_10": 0.2}[args.model]
    train_loader, test_loader = cifar10_loaders(args.batch_size)
    optimizer = optim.SGD(lr=1e-1, momentum=0.9, weight_decay=weight_decay)
    scheduler = lr_scheduler.MultiStepLR([100, 150], gamma=lr_decay)
    tq = reporters.TQDMReporter(range(args.epochs), verb=True)
    c = [
        callbacks.AccuracyCallback(),
        callbacks.LossCallback(),
        reporters.IOReporter("."),
        reporters.TensorboardReporter("."),
        callbacks.WeightSave("."), tq
    ]

    with trainers.SupervisedTrainer(model,
                                    optimizer,
                                    F.cross_entropy,
                                    callbacks=c,
                                    scheduler=scheduler) as trainer:
        for _ in tq:
            trainer.train(train_loader)
            trainer.test(test_loader)
示例#3
0
def get_components(cfg):
    labeled_loader, unlabeled_loader, val_loader, test_loader = get_dataloader(cfg.data.name,
                                                                               cfg.data.labeled_size,
                                                                               cfg.data.unlabeled_size,
                                                                               cfg.data.val_size,
                                                                               cfg.data.batch_size,
                                                                               cfg.data.random_state,
                                                                               download=cfg.data.download,
                                                                               pilaugment=cfg.data.get('pilaugment',
                                                                                                       False)
                                                                               )

    model = wrn28_2(num_classes=6 if cfg.data.name == "animal" else 10)
    optimizer = {'adam': optim.Adam(lr=cfg.optim.lr),
                 'sgd': optim.SGD(lr=cfg.optim.lr, momentum=0.9)}[cfg.optim.name]
    scheduler = {'adam': None,
                 'sgd': lr_scheduler.CosineAnnealingWithWarmup(cfg.optim.epochs,
                                                               4, cfg.optim.epochs // 100)}[cfg.optim.name]
    ema_model = partial(EMAModel, ema_rate=cfg.model.ema_rate, weight_decay=cfg.optim.wd * cfg.optim.lr)
    num_classes = {"animal": 6, "cifar100": 100, "tinyimagenet": 200}.get(cfg.data.name, 10)
    tq = reporters.TQDMReporter(range(cfg.optim.epochs))
    _callbacks = [callbacks.AccuracyCallback(),
                  callbacks.LossCallback(),
                  reporters.IOReporter("."),
                  reporters.TensorboardReporter("."), tq]
    return PackedLoader(labeled_loader, unlabeled_loader), val_loader, test_loader, model, optimizer, \
           scheduler, ema_model, num_classes, tq, _callbacks
示例#4
0
def train_and_eval(cfg):
    train_loader, val_loader, test_loader, num_classes = get_dataloader(
        cfg.data.name, cfg.data.val_size, cfg.data.batch_size,
        cfg.data.download, cfg.augment, False)
    model = get_model(cfg.model.name, num_classes)
    optimizer = optim.SGD(cfg.optim.model.lr,
                          momentum=0.9,
                          weight_decay=cfg.optim.model.weight_decay)
    scheduler = lr_scheduler.MultiStepLR(cfg.optim.model.steps)
    tq = reporters.TQDMReporter(range(cfg.optim.epochs), verb=cfg.verb)
    callback = [
        callbacks.AccuracyCallback(),
        callbacks.LossCallback(),
        reporters.TensorboardReporter("."),
        reporters.IOReporter("."), tq
    ]

    with trainers.SupervisedTrainer(model,
                                    optimizer,
                                    F.cross_entropy,
                                    callbacks=callback,
                                    scheduler=scheduler) as trainer:
        for ep in tq:
            trainer.train(train_loader)
            trainer.test(val_loader, 'val')
            trainer.test(test_loader)
示例#5
0
def main():
    train_loader, test_loader = imagenet_loaders(
        args.root,
        args.batch_size,
        num_train_samples=args.batch_size * args.train_max_iter,
        num_test_samples=args.batch_size * args.test_max_iter)
    pretrained_model = resnet50(pretrained=True)
    for p in pretrained_model.parameters():
        p.requires_grad = False
    pretrained_model.eval()

    generator = ResNetGenerator(3, 3, args.num_filters)
    generator.cuda()
    optimizer = optim.Adam(lr=args.lr, betas=(args.beta1, 0.999))
    trainer = Trainer({
        "generator": generator,
        "classifier": pretrained_model
    },
                      optimizer,
                      reporter.TensorboardReporter([
                          adv_accuracy, fooling_rate,
                          callbacks.AccuracyCallback(),
                          callbacks.LossCallback()
                      ],
                                                   save_dir="results"),
                      noise=torch.randn(3, 224,
                                        224).expand(args.batch_size, -1, -1,
                                                    -1))
    for ep in range(args.epochs):
        trainer.train(train_loader)
        trainer.test(test_loader)
示例#6
0
def main():
    model = se_resnet50(num_classes=1000)

    optimizer = optim.SGD(lr=0.6 / 1024 * args.batch_size, momentum=0.9, weight_decay=1e-4)
    scheduler = lr_scheduler.MultiStepLR([50, 70])

    c = [callbacks.AccuracyCallback(), callbacks.LossCallback()]
    r = reporters.TQDMReporter(range(args.epochs), callbacks=c)
    tb = reporters.TensorboardReporter(c)
    rep = callbacks.CallbackList(r, tb, callbacks.WeightSave("checkpoints"))

    if args.distributed:
        # DistributedSupervisedTrainer sets up torch.distributed
        if args.local_rank == 0:
            print("\nuse DistributedDataParallel")
        trainer = DistributedSupervisedTrainer(model, optimizer, F.cross_entropy, callbacks=rep, scheduler=scheduler,
                                               init_method=args.init_method, backend=args.backend)
    else:
        multi_gpus = torch.cuda.device_count() > 1
        if multi_gpus:
            print("\nuse DataParallel")
        trainer = SupervisedTrainer(model, optimizer, F.cross_entropy, callbacks=rep,
                                    scheduler=scheduler, data_parallel=multi_gpus)
    # if distributed, need to setup loaders after DistributedSupervisedTrainer
    train_loader, test_loader = imagenet_loaders(args.root, args.batch_size, distributed=args.distributed,
                                                 num_train_samples=args.batch_size * 10 if args.debug else None,
                                                 num_test_samples=args.batch_size * 10 if args.debug else None)
    for _ in r:
        trainer.train(train_loader)
        trainer.test(test_loader)
示例#7
0
def main():
    if is_distributed():
        init_distributed()

    model = se_resnet50(num_classes=1000)

    optimizer = optim.SGD(lr=0.6 / 1024 * args.batch_size,
                          momentum=0.9,
                          weight_decay=1e-4)
    scheduler = lr_scheduler.MultiStepLR([50, 70])
    train_loader, test_loader = DATASET_REGISTRY("imagenet")(args.batch_size)

    c = [
        callbacks.AccuracyCallback(),
        callbacks.AccuracyCallback(k=5),
        callbacks.LossCallback(),
        callbacks.WeightSave("."),
        reporters.TensorboardReporter("."),
        reporters.TQDMReporter(range(args.epochs)),
    ]

    with SupervisedTrainer(
            model,
            optimizer,
            F.cross_entropy,
            callbacks=c,
            scheduler=scheduler,
    ) as trainer:
        for _ in c[-1]:
            trainer.train(train_loader)
            trainer.test(test_loader)
示例#8
0
def main(cfg):
    model = wrn28_2(num_classes=10)
    train_loader, test_loader = get_dataloaders(cfg.data.name,
                                                cfg.data.batch_size,
                                                cfg.data.train_size,
                                                cfg.data.random_state)
    optimizer = optim.Adam(lr=cfg.optim.lr)
    tq = reporters.TQDMReporter(range(cfg.optim.epochs))
    c = [
        callbacks.AccuracyCallback(),
        callbacks.LossCallback(),
        reporters.IOReporter("."), tq
    ]

    with SupervisedTrainer(
            model,
            optimizer,
            F.cross_entropy,
            callbacks=c,
            ema_model=partial(EMAModel,
                              ema_rate=cfg.model.ema_rate,
                              weight_decay=cfg.optim.wd * cfg.optim.lr),
    ) as trainer:
        for _ in tq:
            trainer.train(train_loader)
            trainer.test(test_loader)
        trainer.logger.info(
            f"test accuracy: {median(c[0].history['test'][-20:])}")
示例#9
0
def main():
    if args.distributed:
        init_distributed()
    if args.enable_accimage:
        enable_accimage()

    model = resnet50()
    optimizer = optim.SGD(lr=1e-1 * args.batch_size * get_num_nodes() / 256,
                          momentum=0.9,
                          weight_decay=1e-4)
    scheduler = lr_scheduler.MultiStepLR([30, 60, 80])
    c = [callbacks.AccuracyCallback(), callbacks.LossCallback()]
    r = reporters.TQDMReporter(range(args.epochs), callbacks=c)
    tb = reporters.TensorboardReporter(c)
    rep = callbacks.CallbackList(r, tb, callbacks.WeightSave("checkpoints"))
    _train_loader, _test_loader = imagenet_loaders(
        args.root,
        args.batch_size,
        distributed=args.distributed,
        num_train_samples=args.batch_size * 10 if args.debug else None,
        num_test_samples=args.batch_size * 10 if args.debug else None)

    if args.distributed:
        # DistributedSupervisedTrainer sets up torch.distributed
        if args.local_rank == 0:
            print("\nuse DistributedDataParallel\n")
        trainer = DistributedSupervisedTrainer(model,
                                               optimizer,
                                               F.cross_entropy,
                                               callbacks=rep,
                                               scheduler=scheduler,
                                               init_method=args.init_method,
                                               backend=args.backend,
                                               enable_amp=args.enable_amp)
    else:
        use_multi_gpus = torch.cuda.device_count() > 1
        if use_multi_gpus:
            print("\nuse DataParallel\n")
        trainer = SupervisedTrainer(model,
                                    optimizer,
                                    F.cross_entropy,
                                    callbacks=rep,
                                    data_parallel=use_multi_gpus)

    for epoch in r:
        if args.use_prefetcher:
            train_loader = prefetcher.DataPrefetcher(_train_loader)
            test_loader = prefetcher.DataPrefetcher(_test_loader)
        else:
            train_loader, test_loader = _train_loader, _test_loader
        # following apex's training scheme
        trainer.train(train_loader)
        trainer.test(test_loader)

    rep.close()
示例#10
0
def main(cfg):
    model = {
        "resnet20": resnet20,
        "wrn28_10": wrn28_10
    }[cfg.model](num_classes=10)
    weight_decay = {"resnet20": 1e-4, "wrn28_10": 5e-4}[cfg.model]
    lr_decay = {"resnet20": 0.1, "wrn28_10": 0.2}[cfg.model]
    train_loader, test_loader = vision_loaders("cifar10", cfg.batch_size)
    optimizer = None if cfg.bn_no_wd else optim.SGD(
        lr=1e-1, momentum=0.9, weight_decay=weight_decay)
    scheduler = lr_scheduler.MultiStepLR([100, 150], gamma=lr_decay)
    tq = reporters.TQDMReporter(range(cfg.epochs), verb=True)
    c = [
        callbacks.AccuracyCallback(),
        callbacks.LossCallback(),
        reporters.IOReporter("."),
        reporters.TensorboardReporter("."),
        callbacks.WeightSave("."), tq
    ]

    if cfg.bn_no_wd:

        def set_optimizer(trainer):
            bn_params = []
            non_bn_parameters = []
            for name, p in trainer.model.named_parameters():
                if "bn" in name:
                    bn_params.append(p)
                else:
                    non_bn_parameters.append(p)
            optim_params = [
                {
                    "params": bn_params,
                    "weight_decay": 0
                },
                {
                    "params": non_bn_parameters,
                    "weight_decay": weight_decay
                },
            ]
            trainer.optimizer = torch.optim.SGD(optim_params,
                                                lr=1e-1,
                                                momentum=0.9)

        trainers.SupervisedTrainer.set_optimizer = set_optimizer

    with trainers.SupervisedTrainer(model,
                                    optimizer,
                                    F.cross_entropy,
                                    callbacks=c,
                                    scheduler=scheduler) as trainer:

        for _ in tq:
            trainer.train(train_loader)
            trainer.test(test_loader)
示例#11
0
def main(cfg):
    if cfg.distributed.enable:
        init_distributed(use_horovod=cfg.distributed.use_horovod,
                         backend=cfg.distributed.backend,
                         init_method=cfg.distributed.init_method)
    if cfg.enable_accimage:
        enable_accimage()

    model = resnet50()
    optimizer = optim.SGD(lr=1e-1 * cfg.batch_size * get_num_nodes() / 256,
                          momentum=0.9,
                          weight_decay=1e-4)
    scheduler = lr_scheduler.MultiStepLR([30, 60, 80])
    tq = reporters.TQDMReporter(range(cfg.epochs))
    c = [
        callbacks.AccuracyCallback(),
        callbacks.AccuracyCallback(k=5),
        callbacks.LossCallback(), tq,
        reporters.TensorboardReporter("."),
        reporters.IOReporter(".")
    ]
    _train_loader, _test_loader = imagenet_loaders(
        cfg.root,
        cfg.batch_size,
        distributed=cfg.distributed.enable,
        num_train_samples=cfg.batch_size * 10 if cfg.debug else None,
        num_test_samples=cfg.batch_size * 10 if cfg.debug else None)

    use_multi_gpus = not cfg.distributed.enable and torch.cuda.device_count(
    ) > 1
    with SupervisedTrainer(model,
                           optimizer,
                           F.cross_entropy,
                           callbacks=c,
                           scheduler=scheduler,
                           data_parallel=use_multi_gpus,
                           use_horovod=cfg.distributed.use_horovod) as trainer:

        for epoch in tq:
            if cfg.use_prefetcher:
                train_loader = prefetcher.DataPrefetcher(_train_loader)
                test_loader = prefetcher.DataPrefetcher(_test_loader)
            else:
                train_loader, test_loader = _train_loader, _test_loader
            # following apex's training scheme
            trainer.train(train_loader)
            trainer.test(test_loader)
示例#12
0
def train_and_eval(cfg: BaseConfig):
    if cfg.path is None:
        print('cfg.path is None, so FasterAutoAugment is not used')
        policy = None
    else:
        path = Path(hydra.utils.get_original_cwd()) / cfg.path
        assert path.exists()
        policy_weight = torch.load(path, map_location='cpu')
        policy = Policy.faster_auto_augment_policy(
            num_chunks=cfg.model.num_chunks, **policy_weight['policy_kwargs'])
        policy.load_state_dict(policy_weight['policy'])
    train_loader, test_loader, num_classes = DATASET_REGISTRY(cfg.data.name)(
        batch_size=cfg.data.batch_size,
        drop_last=True,
        download=cfg.data.download,
        return_num_classes=True,
        norm=[
            transforms.ToTensor(),
            transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
        ],
        num_workers=4)
    model = MODEL_REGISTRY(cfg.model.name)(num_classes)
    optimizer = optim.SGD(cfg.optim.lr,
                          momentum=cfg.optim.momentum,
                          weight_decay=cfg.optim.weight_decay,
                          nesterov=cfg.optim.nesterov)
    scheduler = lr_scheduler.CosineAnnealingWithWarmup(
        cfg.optim.epochs, cfg.optim.scheduler.mul, cfg.optim.scheduler.warmup)
    tqdm = callbacks.TQDMReporter(range(cfg.optim.epochs))
    c = [callbacks.LossCallback(), callbacks.AccuracyCallback(), tqdm]
    with EvalTrainer(model,
                     optimizer,
                     F.cross_entropy,
                     callbacks=c,
                     scheduler=scheduler,
                     policy=policy,
                     cfg=cfg.model,
                     use_cuda_nonblocking=True) as trainer:
        for _ in tqdm:
            trainer.train(train_loader)
            trainer.test(test_loader)
    print(f"Min. Error Rate: {1 - max(c[1].history['test']):.3f}")
示例#13
0
def main():
    Trainer = trainers.SupervisedTrainer if args.baseline else MixupTrainer
    model = MODELS[args.model](num_classes=NUMCLASSES[args.dataset])
    train_loader, test_loader = DATASETS[args.dataset](args.batch_size)
    optimizer = optim.SGD(lr=1e-1, momentum=0.9, weight_decay=1e-4)
    scheduler = lr_scheduler.MultiStepLR(args.steps, gamma=0.1)
    c = [callbacks.AccuracyCallback(), callbacks.LossCallback()]

    with reporters.TQDMReporter(
            range(args.epochs),
            callbacks=c) as tq, reporters.TensorboardReporter(c) as tb:
        trainer = Trainer(model,
                          optimizer,
                          naive_cross_entropy_loss,
                          callbacks=[tq, tb],
                          scheduler=scheduler,
                          alpha=args.alpha,
                          num_classes=NUMCLASSES[args.dataset])
        for _ in tq:
            trainer.train(train_loader)
            trainer.test(test_loader)
示例#14
0
def main():
    model = MODELS[args.teacher_model](num_classes=10)
    train_loader, test_loader = cifar10_loaders(args.batch_size)
    weight_decay = 1e-4 if "resnet" in args.teacher_model else 5e-4
    lr_decay = 0.1 if "resnet" in args.teacher_model else 0.2
    optimizer = optim.SGD(lr=1e-1, momentum=0.9, weight_decay=weight_decay)
    scheduler = lr_scheduler.MultiStepLR([50, 80], gamma=lr_decay)

    trainer = trainers.SupervisedTrainer(model,
                                         optimizer,
                                         F.cross_entropy,
                                         scheduler=scheduler)
    trainer.logger.info("Train the teacher model!")
    for _ in trange(args.teacher_epochs, ncols=80):
        trainer.train(train_loader)
        trainer.test(test_loader)

    teacher_model = model.eval()

    weight_decay = 1e-4 if "resnet" in args.student_model else 5e-4
    lr_decay = 0.1 if "resnet" in args.student_model else 0.2
    optimizer = optim.SGD(lr=1e-1, momentum=0.9, weight_decay=weight_decay)
    scheduler = lr_scheduler.MultiStepLR([50, 80], gamma=lr_decay)
    model = MODELS[args.student_model](num_classes=10)

    c = [callbacks.AccuracyCallback(), callbacks.LossCallback(), kl_loss]
    with reporters.TQDMReporter(
            range(args.student_epochs),
            callbacks=c) as tq, reporters.TensorboardReporter(c) as tb:
        trainer = DistillationTrainer(model,
                                      optimizer,
                                      F.cross_entropy,
                                      callbacks=[tq, tb],
                                      scheduler=scheduler,
                                      teacher_model=teacher_model,
                                      temperature=args.temperature)
        trainer.logger.info("Train the student model!")
        for _ in tq:
            trainer.train(train_loader)
            trainer.test(test_loader)
示例#15
0
def search(cfg: BaseConfig):
    train_loader, _, num_classes = DATASET_REGISTRY(cfg.data.name)(
        batch_size=cfg.data.batch_size,
        train_size=cfg.data.train_size,
        drop_last=True,
        download=cfg.data.download,
        return_num_classes=True,
        num_workers=4)
    model = {
        'main':
        Discriminator(MODEL_REGISTRY('wrn40_2')(num_classes)),
        'policy':
        Policy.faster_auto_augment_policy(cfg.model.num_sub_policies,
                                          cfg.model.temperature,
                                          cfg.model.operation_count,
                                          cfg.model.num_chunks)
    }
    optimizer = {
        'main': optim.Adam(lr=cfg.optim.main_lr, betas=(0, 0.999)),
        'policy': optim.Adam(lr=cfg.optim.policy_lr, betas=(0, 0.999))
    }
    tqdm = callbacks.TQDMReporter(range(cfg.optim.epochs))
    c = [
        callbacks.LossCallback(),  # classification loss
        callbacks.metric_callback_by_name('d_loss'),  # discriminator loss
        callbacks.metric_callback_by_name('a_loss'),  # augmentation loss
        tqdm
    ]
    with AdvTrainer(model,
                    optimizer,
                    F.cross_entropy,
                    callbacks=c,
                    cfg=cfg.model,
                    use_cuda_nonblocking=True) as trainer:
        for _ in tqdm:
            trainer.train(train_loader)
        trainer.save(
            pathlib.Path(hydra.utils.get_original_cwd()) / 'policy_weights' /
            cfg.data.name)