示例#1
0
    def setUp(self):
        self.net = HopfieldNetwork(3)

        self.input_patterns = np.array([[1, -1, 1],
                                        [-1, 1, -1]])

        weights = np.array([[0.0, -1.0, 1.0],
                            [-1.0, 0.0, -1.0],
                            [1.0, -1.0, 0.0]])

        self.net.set_weights(weights)
示例#2
0
def run_flip_analysis(max_bits):
    input_patterns = [data[cat]['category_vector'] for cat in data.keys()]
    # initialize the network
    network = HopfieldNetwork(1200)
    # train the network
    hebbian_training(network, input_patterns)

    results = []
    for num_flip in range(max_bits):
        correct = train_and_flip(data, network, num_flip)
        results.append((num_flip, correct))
    return results
示例#3
0
def train_and_evaluate(data, vector_type):
    input_patterns = [data[cat][vector_type] for cat in data.keys()]
    # initialize the network
    network = HopfieldNetwork(1200)
    # train the network
    hebbian_training(network, input_patterns)

    results = []
    for i, cat in enumerate(data.keys()):
        cat_data = data[cat]
        hyp_vecs = cat_data['hyponym_vectors'].values()
        num_vecs = len(hyp_vecs)
        correct = 0
        mistakes = []
        for pattern in hyp_vecs:
            output = network.run(pattern)
            idx = find_closest(output, input_patterns)
            if i == idx: correct += 1
            else: mistakes.append(mapping[idx])
        mistakes = dict(Counter(mistakes))
        results.append({'correct': correct, 'num_vecs': num_vecs,
            'mistakes': mistakes, 'category': cat, 'vector_type': vector_type})
    return results
示例#4
0
    def setUp(self):
        self.input_patterns = np.array([[1, -1, 1], [-1, 1, -1]])

        self.net = HopfieldNetwork(3)
示例#5
0
e_pattern *= 2
e_pattern -= 1

s_pattern *= 2
s_pattern -= 1

input_patterns = np.array([
    j_pattern.flatten(),
    a_pattern.flatten(),
    m_pattern.flatten(),
    e_pattern.flatten(),
    s_pattern.flatten()
])

# first creating the network and then train it with hebbian
network = HopfieldNetwork(35)

hebbian_training(network, input_patterns)

# Create the test patterns by using the training patterns and adding some noise to them
# and use the neural network to denoise them
j_test = j_pattern.flatten()

for i in range(4):
    p = randint(0, 34)
    j_test[p] *= -1

j_result = network.run(j_test)

j_result.shape = (7, 5)
j_test.shape = (7, 5)
 def setUp(self):
     self.net = HopfieldNetwork(10)