示例#1
0
    def test_horovod_broadcast_deferred_init_parameters(self):
        """Test that the deferred initialized parameters are broadcasted."""
        hvd.init()
        root_rank = 0
        rank = hvd.rank()

        # This test does not apply if there is only one worker.
        if hvd.size() == 1:
            return

        mx.random.seed(rank)
        layer = mx.gluon.nn.Conv2D(10, 2)
        layer.initialize()
        hvd.broadcast_parameters(layer.collect_params(), root_rank=root_rank)

        x = mx.nd.ones((5, 4, 10, 10))
        layer(x)
        tensors = [p.data() for _, p in sorted(layer.collect_params().items())]
        root_tensors = []
        for tensor in tensors:
            root_tensors.append(hvd.broadcast(tensor, root_rank=root_rank))

        for tensor, root_tensor in zip(tensors, root_tensors):
            assert same(tensor.asnumpy(), root_tensor.asnumpy()), \
                'horovod did not broadcast deferred initialized parameter correctly'
示例#2
0
文件: yolo.py 项目: ygest/gluon-cv
    def _init_trainer(self):
        if self.last_train is None:
            raise RuntimeError(
                'Cannot init trainer without knowing the size of training data'
            )
        if isinstance(self.last_train, pd.DataFrame):
            train_size = len(self.last_train)
        elif isinstance(self.last_train, int):
            train_size = self.last_train
        else:
            raise ValueError("Unknown type of self.last_train: {}".format(
                type(self.last_train)))

        if self._cfg.train.lr_decay_period > 0:
            lr_decay_epoch = list(
                range(self._cfg.train.lr_decay_period, self._cfg.train.epochs,
                      self._cfg.train.lr_decay_period))
        else:
            lr_decay_epoch = [int(i) for i in self._cfg.train.lr_decay_epoch]
        lr_decay_epoch = [
            e - self._cfg.train.warmup_epochs for e in lr_decay_epoch
        ]
        num_batches = train_size // self._cfg.train.batch_size
        lr_scheduler = LRSequential([
            LRScheduler('linear',
                        base_lr=0,
                        target_lr=self._cfg.train.lr,
                        nepochs=self._cfg.train.warmup_epochs,
                        iters_per_epoch=num_batches),
            LRScheduler(self._cfg.train.lr_mode,
                        base_lr=self._cfg.train.lr,
                        nepochs=self._cfg.train.epochs -
                        self._cfg.train.warmup_epochs,
                        iters_per_epoch=num_batches,
                        step_epoch=lr_decay_epoch,
                        step_factor=self._cfg.train.lr_decay,
                        power=2),
        ])

        if self._cfg.horovod:
            hvd.broadcast_parameters(self.net.collect_params(), root_rank=0)
            self.trainer = hvd.DistributedTrainer(
                self.net.collect_params(), 'sgd', {
                    'wd': self._cfg.train.wd,
                    'momentum': self._cfg.train.momentum,
                    'lr_scheduler': lr_scheduler
                })
        else:
            self.trainer = gluon.Trainer(
                self.net.collect_params(),
                'sgd', {
                    'wd': self._cfg.train.wd,
                    'momentum': self._cfg.train.momentum,
                    'lr_scheduler': lr_scheduler
                },
                kvstore='local',
                update_on_kvstore=(False if self._cfg.yolo3.amp else None))

        if self._cfg.yolo3.amp:
            amp.init_trainer(self.trainer)
示例#3
0
    def _init_trainer(self):
        kv_store_type = 'device' if (self._cfg.faster_rcnn.amp and 'nccl' in self._cfg.kv_store) \
            else self._cfg.kv_store
        kv = mx.kvstore.create(kv_store_type)
        optimizer_params = {
            'learning_rate': self._cfg.train.lr,
            'wd': self._cfg.train.wd,
            'momentum': self._cfg.train.momentum
        }
        if self._cfg.faster_rcnn.amp:
            optimizer_params['multi_precision'] = True
        if self._cfg.horovod:
            hvd.broadcast_parameters(self.net.collect_params(), root_rank=0)
            self.trainer = hvd.DistributedTrainer(
                self.net.collect_train_params(
                ),  # fix batchnorm, fix first stage, etc...
                'sgd',
                optimizer_params)
        else:
            self.trainer = gluon.Trainer(
                self.net.collect_train_params(
                ),  # fix batchnorm, fix first stage, etc...
                'sgd',
                optimizer_params,
                update_on_kvstore=(False
                                   if self._cfg.faster_rcnn.amp else None),
                kvstore=kv)

        if self._cfg.faster_rcnn.amp:
            self._cfg.init_trainer(self.trainer)
示例#4
0
    def test_two_trainer(self):
        """Test using horovod allreduce in MXNet Gluon trainer."""
        from mxnet import gluon
        from mxnet.gluon import Block, nn, HybridBlock

        hvd.init()
        rank = hvd.rank()
        ctx = mx.cpu(rank)

        net1 = nn.Dense(20, in_units=10)
        net2 = nn.Dense(30, in_units=10)
        net1.initialize(ctx=ctx)
        net2.initialize(ctx=ctx)

        params1 = net1.collect_params()
        params2 = net2.collect_params()
        hvd.broadcast_parameters(params1, prefix="net1")
        hvd.broadcast_parameters(params2, prefix="net2")
        trainer1 = hvd.DistributedTrainer(params1, 'sgd', {'learning_rate': 0.1}, prefix="net1")
        trainer2 = hvd.DistributedTrainer(params2, 'sgd', {'learning_rate': 0.1}, prefix="net2")

        for i in range(10):
            data = mx.nd.ones((5, 10), ctx=ctx)
            with mx.autograd.record():
                pred1 = net1(data).sum()
                pred2 = net2(data).sum()
            mx.autograd.backward([pred1, pred2])
            trainer1.step(1.0)
            trainer2.step(1.0)
            l = pred1.asscalar() + pred2.asscalar()
示例#5
0
    def test_horovod_broadcast_parameters(self):
        """Test the correctness of broadcast_parameters."""
        hvd.init()
        rank = hvd.rank()
        size = hvd.size()

        # This test does not apply if there is only one worker.
        if size == 1:
            self.skipTest("Only one worker available")

        dtypes = ['int32', 'int64', 'float32', 'float64']
        dims = [1, 2, 3]
        ctx = self._current_context()
        count = 0
        shapes = [(), (17), (17, 17), (17, 17, 17)]
        root_rank = 1
        tensor_dict = {}
        root_dict = {}
        for dtype, dim, in itertools.product(dtypes, dims):
            tensor_dict[count] = mx.nd.ones(shapes[dim], ctx=ctx) * rank
            root_dict[count] = mx.nd.ones(shapes[dim], ctx=ctx) * root_rank
            tensor_dict[count] = tensor_dict[count].astype(dtype)
            root_dict[count] = root_dict[count].astype(dtype)
            count += 1

        hvd.broadcast_parameters(tensor_dict, root_rank=root_rank)
        for i in range(count):
            if not same(tensor_dict[i].asnumpy(), root_dict[i].asnumpy()):
                print("broadcast", i, dtypes[i], dims[i])
                print("broadcast_tensor", hvd.rank(), tensor_dict[i])
                print("root_tensor", hvd.rank(), root_dict[i])
                print("comparison", hvd.rank(), tensor_dict[i] == root_dict[i])
            assert same(tensor_dict[i].asnumpy(), root_dict[i].asnumpy()), \
                'hvd.broadcast_parameters produces incorrect broadcasted tensor'
def train(net, train_data, batch_size, ctx, logging, args):
    if isinstance(ctx, mx.Context):
        ctx = [ctx]
    net.initialize(mx.init.Xavier(), ctx=ctx)

    optimizer_params = {
        'learning_rate': args.lr,
        'wd': args.wd,
        'momentum': args.momentum
    }
    optimizer = 'nag'
    hvd.broadcast_parameters(net.collect_params(), root_rank=0)
    trainer = hvd.DistributedTrainer(net.collect_params(), optimizer,
                                     optimizer_params)

    metric = mx.metric.Accuracy()
    train_metric = mx.metric.Accuracy()
    loss_fn = gluon.loss.SoftmaxCrossEntropyLoss()

    logging.info('Training Begins')

    for epoch in range(args.epochs):
        tic = time.time()
        train_metric.reset()
        metric.reset()
        train_loss = 0
        num_batch = len(train_data)

        for i, batch in enumerate(train_data):
            data = gluon.utils.split_and_load(batch[0],
                                              ctx_list=ctx,
                                              batch_axis=0)
            label = gluon.utils.split_and_load(batch[1],
                                               ctx_list=ctx,
                                               batch_axis=0)

            with ag.record():
                output = [net(X) for X in data]
                loss = [loss_fn(yhat, y) for yhat, y in zip(output, label)]
            for l in loss:
                l.backward()
            trainer.step(batch_size)
            train_loss += sum([l.sum().asscalar() for l in loss])

            train_metric.update(label, output)

            if i % 10 == 0:
                name, acc = train_metric.get()
                logging.info('[Epoch %d Batch %d] Training: %s=%f' %
                             (epoch, i, name, acc))

        train_loss /= batch_size * num_batch

        if hvd.rank() == 0:
            elapsed = time.time() - tic
            speed = num_batch * batch_size * hvd.size() / elapsed
            logging.info('Epoch[%d]\tSpeed=%.2f samples/s\tTime cost=%f',
                         epoch, speed, elapsed)
示例#7
0
    def run_training(self):
        """ Run training benchmarks.
        Returns:
            Numpy array containing batch times (string, numpy array).
        """
        # Create data iterator and resize it to total number of iterations (no matter what input data size is)
        train_data = DataIteratorFactory.get(
            (self.worker_batch, ) + self.model.input_shape,
            (self.worker_batch, ) + self.model.labels_shape,
            self.model.labels_range,
            self.args,
            kv_store=self.kv_store)
        # https://github.com/apache/incubator-mxnet/blob/master/example/distributed_training-horovod/resnet50_imagenet.py
        optimizer_params = {
            'multi_precision': True
        } if self.args.dtype == 'float16' else {}
        if self.is_horovod:
            optimizer_params['rescale_grad'] = 1.0 / self.worker_batch
        opt = mx.optimizer.create('sgd', **optimizer_params)
        if self.is_horovod:
            opt = hvd.DistributedOptimizer(opt)

        mod = mx.mod.Module(symbol=self.model.output, context=self.devices[0])
        mod.bind(data_shapes=train_data.provide_data,
                 label_shapes=train_data.provide_label,
                 for_training=True)
        mod.init_params(
            mx.init.Xavier(rnd_type='gaussian', factor_type="in", magnitude=2))
        if self.is_horovod:
            arg_params, aux_params = mod.get_params()
            if arg_params:
                hvd.broadcast_parameters(arg_params, root_rank=0)
            if aux_params:
                hvd.broadcast_parameters(aux_params, root_rank=0)
            mod.set_params(arg_params=arg_params, aux_params=aux_params)

        batch_end_callback = BatchEndCallback(self.args.num_warmup_batches,
                                              self.args.num_batches)
        # print ("Starting benchmarks.")
        # TODO: In current implementation, number of epochs must always equal to 1. It is iterator responsibility to
        #       iterate the right number of batched - warm up plus benchmark batches.
        mod.fit(train_data,
                kvstore=self.kv_store,
                optimizer=opt,
                optimizer_params=optimizer_params,
                eval_metric=self.model.eval_metric,
                batch_end_callback=[batch_end_callback],
                begin_epoch=0,
                num_epoch=1)

        if self.is_horovod:
            start_time = timeit.default_timer()
            mx.ndarray.waitall()
            logging.info(
                "(horovod) wait time for all ndarrays is %.5f seconds",
                timeit.default_timer() - start_time)
        return batch_end_callback.batch_times
示例#8
0
文件: ssd.py 项目: saurabhya/gluon-cv
    def _init_trainer(self):
        if self._cfg.horovod:
            hvd.broadcast_parameters(self.net.collect_params(), root_rank=0)
            self.trainer = hvd.DistributedTrainer(
                self.net.collect_params(), 'sgd',
                {'learning_rate': self._cfg.train.lr, 'wd': self._cfg.train.wd,
                 'momentum': self._cfg.train.momentum})
        else:
            self.trainer = gluon.Trainer(
                self.net.collect_params(), 'sgd',
                {'learning_rate': self._cfg.train.lr, 'wd': self._cfg.train.wd,
                 'momentum': self._cfg.train.momentum},
                update_on_kvstore=(False if self._cfg.ssd.amp else None))

        if self._cfg.ssd.amp:
            amp.init_trainer(self.trainer)
示例#9
0
    # Creating the module
    mod = mx.mod.Module(
        symbol=sym,
        context=context,
        data_names=[k[0] for k in train_iter.provide_data_single],
        label_names=[k[0] for k in train_iter.provide_label_single],
        fixed_param_names=fixed_param_names)

    shape_dict = dict(train_iter.provide_data_single +
                      train_iter.provide_label_single)
    sym_inst.infer_shape(shape_dict)
    arg_params, aux_params = load_param(config.network.pretrained,
                                        config.network.pretrained_epoch,
                                        convert=True)
    hvd.broadcast_parameters(arg_params, root_rank=0)
    hvd.broadcast_parameters(aux_params, root_rank=0)

    if config.TRAIN.ONLY_PROPOSAL:
        sym_inst.init_weight_rpn(config, arg_params, aux_params)
    else:
        sym_inst.init_weight_rcnn(config, arg_params, aux_params)

    # Creating the metrics
    eval_metric = metric.RPNAccMetric()
    cls_metric = metric.RPNLogLossMetric()
    bbox_metric = metric.RPNL1LossMetric()
    rceval_metric = metric.RCNNAccMetric(config)
    rccls_metric = metric.RCNNLogLossMetric(config)
    rcbbox_metric = metric.RCNNL1LossCRCNNMetric(config)
示例#10
0
def train(net, train_data, val_data, eval_metric, ctx, args):
    """Training pipeline"""
    net.collect_params().reset_ctx(ctx)

    if args.horovod:
        hvd.broadcast_parameters(net.collect_params(), root_rank=0)
        trainer = hvd.DistributedTrainer(
                        net.collect_params(), 'sgd',
                        {'learning_rate': args.lr, 'wd': args.wd, 'momentum': args.momentum})
    else:
        trainer = gluon.Trainer(
                    net.collect_params(), 'sgd',
                    {'learning_rate': args.lr, 'wd': args.wd, 'momentum': args.momentum},
                    update_on_kvstore=(False if args.amp else None))

    if args.amp:
        amp.init_trainer(trainer)

    # lr decay policy
    lr_decay = float(args.lr_decay)
    lr_steps = sorted([float(ls) for ls in args.lr_decay_epoch.split(',') if ls.strip()])

    mbox_loss = gcv.loss.SSDMultiBoxLoss()
    ce_metric = mx.metric.Loss('CrossEntropy')
    smoothl1_metric = mx.metric.Loss('SmoothL1')

    # set up logger
    logging.basicConfig()
    logger = logging.getLogger()
    logger.setLevel(logging.INFO)
    log_file_path = args.save_prefix + '_train.log'
    log_dir = os.path.dirname(log_file_path)
    if log_dir and not os.path.exists(log_dir):
        os.makedirs(log_dir)
    fh = logging.FileHandler(log_file_path)
    logger.addHandler(fh)
    logger.info(args)
    logger.info('Start training from [Epoch {}]'.format(args.start_epoch))
    best_map = [0]

    for epoch in range(args.start_epoch, args.epochs):
        while lr_steps and epoch >= lr_steps[0]:
            new_lr = trainer.learning_rate * lr_decay
            lr_steps.pop(0)
            trainer.set_learning_rate(new_lr)
            logger.info("[Epoch {}] Set learning rate to {}".format(epoch, new_lr))
        ce_metric.reset()
        smoothl1_metric.reset()
        tic = time.time()
        btic = time.time()
        net.hybridize(static_alloc=True, static_shape=True)

        for i, batch in enumerate(train_data):
            if args.dali:
                # dali iterator returns a mxnet.io.DataBatch
                data = [d.data[0] for d in batch]
                box_targets = [d.label[0] for d in batch]
                cls_targets = [nd.cast(d.label[1], dtype='float32') for d in batch]

            else:
                data = gluon.utils.split_and_load(batch[0], ctx_list=ctx, batch_axis=0)
                cls_targets = gluon.utils.split_and_load(batch[1], ctx_list=ctx, batch_axis=0)
                box_targets = gluon.utils.split_and_load(batch[2], ctx_list=ctx, batch_axis=0)

            with autograd.record():
                cls_preds = []
                box_preds = []
                for x in data:
                    cls_pred, box_pred, _ = net(x)
                    cls_preds.append(cls_pred)
                    box_preds.append(box_pred)
                sum_loss, cls_loss, box_loss = mbox_loss(
                    cls_preds, box_preds, cls_targets, box_targets)
                if args.amp:
                    with amp.scale_loss(sum_loss, trainer) as scaled_loss:
                        autograd.backward(scaled_loss)
                else:
                    autograd.backward(sum_loss)
            # since we have already normalized the loss, we don't want to normalize
            # by batch-size anymore
            trainer.step(1)

            if (not args.horovod or hvd.rank() == 0):
                local_batch_size = int(args.batch_size // (hvd.size() if args.horovod else 1))
                ce_metric.update(0, [l * local_batch_size for l in cls_loss])
                smoothl1_metric.update(0, [l * local_batch_size for l in box_loss])
                if args.log_interval and not (i + 1) % args.log_interval:
                    name1, loss1 = ce_metric.get()
                    name2, loss2 = smoothl1_metric.get()
                    logger.info('[Epoch {}][Batch {}], Speed: {:.3f} samples/sec, {}={:.3f}, {}={:.3f}'.format(
                        epoch, i, args.batch_size/(time.time()-btic), name1, loss1, name2, loss2))
                btic = time.time()

        if (not args.horovod or hvd.rank() == 0):
            name1, loss1 = ce_metric.get()
            name2, loss2 = smoothl1_metric.get()
            logger.info('[Epoch {}] Training cost: {:.3f}, {}={:.3f}, {}={:.3f}'.format(
                epoch, (time.time()-tic), name1, loss1, name2, loss2))
            if (epoch % args.val_interval == 0) or (args.save_interval and epoch % args.save_interval == 0):
                # consider reduce the frequency of validation to save time
                map_name, mean_ap = validate(net, val_data, ctx, eval_metric)
                val_msg = '\n'.join(['{}={}'.format(k, v) for k, v in zip(map_name, mean_ap)])
                logger.info('[Epoch {}] Validation: \n{}'.format(epoch, val_msg))
                current_map = float(mean_ap[-1])
            else:
                current_map = 0.
            save_params(net, best_map, current_map, epoch, args.save_interval, args.save_prefix)
示例#11
0
def train(args):
    _, num_parts, rank, local_rank, _, ctx_l = init_comm(
        args.comm_backend, args.gpus)
    if args.comm_backend == 'horovod':
        logging_config(
            args.save_dir,
            name=f'train_transformer_rank{rank}_local{local_rank}_{num_parts}',
            console=(rank == 0))
        logging.info(args)
    else:
        logging_config(args.save_dir, name='train_transformer', console=True)
        logging.info(args)
    use_amp = args.fp16
    if use_amp:
        from mxnet import amp
    src_tokenizer = create_tokenizer(args.src_tokenizer,
                                     args.src_subword_model_path,
                                     args.src_vocab_path)
    tgt_tokenizer = create_tokenizer(args.tgt_tokenizer,
                                     args.tgt_subword_model_path,
                                     args.tgt_vocab_path)
    base_tgt_tokenizer = MosesTokenizer(args.tgt_lang)
    src_vocab = src_tokenizer.vocab
    tgt_vocab = tgt_tokenizer.vocab
    train_src_data, train_tgt_data = load_dataset_with_cache(
        args.train_src_corpus,
        args.train_tgt_corpus,
        src_tokenizer,
        tgt_tokenizer,
        args.overwrite_cache,
        local_rank,
        max_src_length=args.max_src_length,
        max_tgt_length=args.max_tgt_length,
        pretokenized=not args.tokenize)
    dev_src_data, dev_tgt_data = load_dataset_with_cache(
        args.dev_src_corpus,
        args.dev_tgt_corpus,
        src_tokenizer,
        tgt_tokenizer,
        args.overwrite_cache,
        local_rank,
        pretokenized=not args.tokenize)
    tgt_detok_sentences = []
    tgt_raw_sentences = []
    with open(args.dev_tgt_corpus, 'r') as in_f:
        for line in in_f:
            tgt_detok_sentences.append(
                base_tgt_tokenizer.decode(
                    tgt_tokenizer.decode(line.split()).split()))
    with open(args.dev_tgt_raw_corpus, 'r') as in_f:
        for line in in_f:
            tgt_raw_sentences.append(line.strip())
    data_train = gluon.data.SimpleDataset([
        (src_tokens, tgt_tokens, len(src_tokens), len(tgt_tokens), i)
        for i, (src_tokens,
                tgt_tokens) in enumerate(zip(train_src_data, train_tgt_data))
    ])
    val_samples = [
        (src_tokens, tgt_tokens, len(src_tokens), len(tgt_tokens), i)
        for i, (src_tokens,
                tgt_tokens) in enumerate(zip(dev_src_data, dev_tgt_data))
    ]
    if args.comm_backend == 'horovod':
        slice_begin = rank * (len(val_samples) // num_parts)
        slice_end = min((rank + 1) * (len(val_samples) // num_parts),
                        len(val_samples))
        data_val = gluon.data.SimpleDataset(val_samples[slice_begin:slice_end])
    else:
        data_val = gluon.data.SimpleDataset(val_samples)
    # Construct the model + loss function
    if args.cfg.endswith('.yml'):
        cfg = TransformerModel.get_cfg().clone_merge(args.cfg)
    else:
        cfg = TransformerModel.get_cfg(args.cfg)
    cfg.defrost()
    cfg.MODEL.src_vocab_size = len(src_vocab)
    cfg.MODEL.tgt_vocab_size = len(tgt_vocab)
    cfg.MODEL.layout = 'TN'
    cfg.freeze()
    model = TransformerModel.from_cfg(cfg)
    model.initialize(mx.init.Xavier(magnitude=args.magnitude), ctx=ctx_l)
    model.hybridize()
    for v in model.collect_params().values():
        if v.grad_req != 'null':
            v.grad_req = 'add'
    # Do not apply weight decay to all the LayerNorm and bias
    for _, v in model.collect_params('.*beta|.*gamma|.*bias').items():
        v.wd_mult = 0.0
    param_dict = deduplicate_param_dict(model.collect_params())

    inference_model = TransformerInference(model=model)
    inference_model.hybridize()
    if local_rank == 0:
        logging.info(model)
    with open(os.path.join(args.save_dir, 'config.yml'), 'w') as cfg_f:
        cfg_f.write(cfg.dump())
    label_smooth_loss = LabelSmoothCrossEntropyLoss(
        num_labels=len(tgt_vocab),
        alpha=args.label_smooth_alpha,
        from_logits=False)
    label_smooth_loss.hybridize()

    # Construct the beam search sampler
    scorer = BeamSearchScorer(alpha=args.lp_alpha,
                              K=args.lp_k,
                              from_logits=False)
    beam_search_sampler = BeamSearchSampler(beam_size=args.beam_size,
                                            decoder=inference_model,
                                            vocab_size=len(tgt_vocab),
                                            eos_id=tgt_vocab.eos_id,
                                            scorer=scorer,
                                            stochastic=False,
                                            max_length_a=args.max_length_a,
                                            max_length_b=args.max_length_b)

    logging.info(beam_search_sampler)
    if args.comm_backend == 'horovod':
        hvd.broadcast_parameters(param_dict, root_rank=0)

    # Construct the trainer
    if args.lr is None:
        base_lr = 2.0 / math.sqrt(args.num_units) / math.sqrt(
            args.warmup_steps)
    else:
        base_lr = args.lr
    lr_scheduler = InverseSquareRootScheduler(
        warmup_steps=args.warmup_steps,
        base_lr=base_lr,
        warmup_init_lr=args.warmup_init_lr)
    optimizer_params = {
        'learning_rate': args.lr,
        'beta1': 0.9,
        'beta2': 0.997,
        'epsilon': 1e-9,
        'lr_scheduler': lr_scheduler,
        'wd': args.wd
    }
    user_provided_ptimizer_params = json.loads(args.optimizer_params)
    optimizer_params.update(user_provided_ptimizer_params)

    if args.fp16:
        optimizer_params.update({'multi_precision': True})
    if args.comm_backend == 'horovod':
        trainer = hvd.DistributedTrainer(param_dict, args.optimizer,
                                         optimizer_params)
    else:
        trainer = gluon.Trainer(param_dict,
                                args.optimizer,
                                optimizer_params,
                                update_on_kvstore=False)
    # Load Data
    if args.sampler == 'BoundedBudgetSampler':
        train_batch_sampler = BoundedBudgetSampler(
            lengths=[(ele[2], ele[3]) for ele in data_train],
            max_num_tokens=args.max_num_tokens,
            max_num_sentences=args.max_num_sentences,
            shuffle=True,
            seed=args.seed)
    elif args.sampler == 'FixedBucketSampler':
        if args.comm_backend == 'horovod':
            raise NotImplementedError(
                'FixedBucketSampler does not support horovod at present')

        if args.bucket_scheme == 'constant':
            bucket_scheme = ConstWidthBucket()
        elif args.bucket_scheme == 'linear':
            bucket_scheme = LinearWidthBucket()
        elif args.bucket_scheme == 'exp':
            bucket_scheme = ExpWidthBucket(bucket_len_step=1.2)
        else:
            raise NotImplementedError
        # TODO(sxjscience) Support auto-bucket-size tuning
        train_batch_sampler = FixedBucketSampler(lengths=[
            (ele[2], ele[3]) for ele in data_train
        ],
                                                 batch_size=args.batch_size,
                                                 num_buckets=args.num_buckets,
                                                 ratio=args.bucket_ratio,
                                                 shuffle=True,
                                                 use_average_length=True,
                                                 bucket_scheme=bucket_scheme,
                                                 seed=args.seed)
    else:
        raise NotImplementedError

    num_updates_per_epoch = int(
        math.ceil(
            len(train_batch_sampler) /
            (num_parts * len(ctx_l) * args.num_accumulated)))
    # Convert the batch sampler to multiple shards
    if num_parts > 1:
        train_batch_sampler = ShardedIterator(train_batch_sampler,
                                              num_parts=num_parts,
                                              part_index=rank,
                                              even_size=True,
                                              seed=args.seed + 1000 * rank)

    logging.info(train_batch_sampler)

    batchify_fn = bf.Tuple(bf.Pad(), bf.Pad(), bf.Stack(), bf.Stack(),
                           bf.Stack())
    train_data_loader = gluon.data.DataLoader(
        data_train,
        batch_sampler=train_batch_sampler,
        batchify_fn=batchify_fn,
        num_workers=0)
    val_data_loader = gluon.data.DataLoader(data_val,
                                            batch_size=args.val_batch_size,
                                            batchify_fn=batchify_fn,
                                            num_workers=0,
                                            shuffle=False)
    params = [p for p in param_dict.values() if p.grad_req != 'null']
    model_averager = AverageSGDTracker(param_dict)
    log_start_time = time.time()
    num_params, num_fixed_params = None, None

    # TODO(sxjscience) Add a log metric class
    log_avg_loss_l = [mx.np.array(0.0, ctx=ctx) for ctx in ctx_l]
    # Maintain the denominator of the loss.
    log_avg_loss_denom_l = [mx.np.array(0.0, ctx=ctx) for ctx in ctx_l]
    log_wc_l = [mx.np.array(0, dtype=np.int64, ctx=ctx) for ctx in ctx_l]
    log_tgt_wc_l = [mx.np.array(0, dtype=np.int64, ctx=ctx) for ctx in ctx_l]
    log_avg_grad_norm = 0
    log_iter_num = 0

    if local_rank == 0:
        writer = SummaryWriter(
            logdir=os.path.join(args.save_dir, 'tensorboard'))
    if use_amp:
        amp.init_trainer(trainer)
    train_multi_data_loader = grouper(repeat(train_data_loader), len(ctx_l))
    # when args.epochs < 0, the model will keep training
    if args.epochs < 0:
        if args.max_update > 0:
            total_train_iters = args.max_update
            if args.num_averages > 0:
                assert args.num_averages <= total_train_iters // args.save_iterval_update
                avg_start_iter = (
                    total_train_iters // args.save_iterval_update -
                    args.num_averages) * args.save_iterval_update
            else:
                avg_start_iter = -1
        else:
            total_train_iters = np.inf
            avg_start_iter = -1
    else:
        total_train_iters = args.epochs * num_updates_per_epoch
        if args.num_averages > 0:
            assert args.num_averages <= args.epochs
            avg_start_iter = (args.epochs -
                              args.num_average) * num_updates_per_epoch
        else:
            avg_start_iter = -1

    # Here, we are manually setting up the scale to 1.0 because
    # in horovod, the scale can be the number of workers:
    # See the code here: https://github.com/horovod/horovod/blob/125115583b7029196e2ec530decd4209459d5479/horovod/mxnet/__init__.py#L141
    # Since we will need to use the dynamic scaling in amp, we will manually call amp.unscale().
    # A scale that is larger than 1.0 can be problematic in this case.
    trainer._scale = 1.0
    if args.max_num_tokens > 0:
        const_scale = args.max_num_tokens
    else:
        const_scale = 100

    train_start_time = time.time()

    for train_iter in range(total_train_iters):
        model.zero_grad()
        loss_denom_l = [mx.np.array(0.0, ctx=ctx) for ctx in ctx_l]
        for i in range(args.num_accumulated):
            loss_l = []
            sample_data_l = next(train_multi_data_loader)
            for j, (sample_data, ctx) in enumerate(zip(sample_data_l, ctx_l)):
                src_token_ids, tgt_token_ids, src_valid_length,\
                tgt_valid_length, sample_ids = sample_data
                src_token_ids = src_token_ids.as_in_ctx(ctx)
                tgt_token_ids = tgt_token_ids.as_in_ctx(ctx)
                src_valid_length = src_valid_length.as_in_ctx(ctx)
                tgt_valid_length = tgt_valid_length.as_in_ctx(ctx)
                src_wc, tgt_wc, bs = src_valid_length.sum(), \
                                     tgt_valid_length.sum(), src_token_ids.shape[0]
                log_wc_l[j] += src_wc + tgt_wc
                log_tgt_wc_l[j] += tgt_wc
                token_count = (tgt_valid_length - 1).sum()
                loss_denom_l[j] += token_count / const_scale
                log_avg_loss_denom_l[j] += token_count / const_scale
                with mx.autograd.record():
                    if model.layout == 'NT':
                        tgt_pred = model(src_token_ids, src_valid_length,
                                         tgt_token_ids[:, :-1],
                                         tgt_valid_length - 1)
                        tgt_labels = tgt_token_ids[:, 1:]
                        loss = label_smooth_loss(tgt_pred, tgt_labels)
                        loss = mx.npx.sequence_mask(
                            loss,
                            sequence_length=tgt_valid_length - 1,
                            use_sequence_length=True,
                            axis=1)
                        loss = loss.sum() / const_scale
                        loss_l.append(loss)
                    elif model.layout == 'TN':
                        tgt_pred = model(src_token_ids.T, src_valid_length,
                                         tgt_token_ids.T[:-1, :],
                                         tgt_valid_length - 1)
                        tgt_labels = tgt_token_ids.T[1:, :]
                        loss = label_smooth_loss(tgt_pred, tgt_labels)
                        loss = mx.npx.sequence_mask(
                            loss,
                            sequence_length=tgt_valid_length - 1,
                            use_sequence_length=True,
                            axis=0)
                        loss = loss.sum() / const_scale
                        loss_l.append(loss)
                log_avg_loss_l[j] += loss
            if use_amp:
                with mx.autograd.record():
                    with amp.scale_loss(loss_l, trainer) as amp_loss_l:
                        for loss in amp_loss_l:
                            loss.backward()
            else:
                with mx.autograd.record():
                    for loss in loss_l:
                        loss.backward()

        # Print the total number of parameters
        if local_rank == 0 and num_params is None:
            num_params, num_fixed_params = count_parameters(param_dict)
            logging.info(
                'Total Number of Parameters (not-fixed/fixed): {}/{}'.format(
                    num_params, num_fixed_params))
        # All-Reduce the gradient
        trainer.allreduce_grads()
        if args.comm_backend == 'horovod':
            # All-Reduce the loss denominator
            assert len(loss_denom_l) == 1
            loss_denom = hvd.allreduce(loss_denom_l[0],
                                       average=False).asnumpy()
        else:
            loss_denom = sum([ele.asnumpy() for ele in loss_denom_l])
        if use_amp:
            # We need to first unscale the gradient and then perform allreduce.
            grad_scale = trainer.amp_loss_scale * loss_denom
        else:
            grad_scale = loss_denom
        if args.max_grad_norm is not None:
            total_norm, ratio, is_finite\
                = clip_grad_global_norm(params, args.max_grad_norm * grad_scale)
            total_norm = total_norm / grad_scale
        else:
            total_norm = grad_global_norm(params)
            total_norm = total_norm / grad_scale
        log_avg_grad_norm += total_norm
        log_iter_num += 1

        trainer.update(loss_denom, ignore_stale_grad=True)

        if avg_start_iter > 0 and train_iter >= avg_start_iter:
            model_averager.step()

        if ((train_iter + 1) % args.log_interval == 0
                or train_iter + 1 == total_train_iters):
            if args.comm_backend == 'horovod':
                # Use allreduce to get the total number of tokens and loss
                log_wc = hvd.allreduce(log_wc_l[0], average=False).asnumpy()
                log_tgt_wc = hvd.allreduce(log_tgt_wc_l[0],
                                           average=False).asnumpy()
                log_avg_loss = hvd.allreduce(log_avg_loss_l[0] /
                                             log_avg_loss_denom_l[0],
                                             average=True)
                log_avg_loss = log_avg_loss.asnumpy()
            else:
                log_wc = sum([ele.asnumpy() for ele in log_wc_l])
                log_tgt_wc = sum([ele.asnumpy() for ele in log_tgt_wc_l])
                log_avg_loss =\
                    sum([log_avg_loss_l[i].asnumpy() / log_avg_loss_denom_l[i].asnumpy()
                         for i in range(len(log_avg_loss_l))]) / len(log_avg_loss_l)
            log_avg_grad_norm = log_avg_grad_norm / log_iter_num
            log_end_time = time.time()
            wps = log_wc / (log_end_time - log_start_time)
            epoch_id = train_iter // num_updates_per_epoch
            logging.info(
                '[Epoch {} Iter {}/{}, Overall {}/{}] loss={:.4f}, ppl={:.4f}, '
                'throughput={:.2f}K wps, total wc={:.2f}K, wpb={:.2f}K,'
                ' LR={}, gnorm={:.4f}, ETA={:.2f}h'.format(
                    epoch_id, train_iter % num_updates_per_epoch + 1,
                    num_updates_per_epoch,
                    train_iter + 1, total_train_iters, log_avg_loss,
                    np.exp(log_avg_loss), wps / 1000, log_wc / 1000,
                    log_tgt_wc / 1000 / log_iter_num, trainer.learning_rate,
                    log_avg_grad_norm,
                    (log_end_time - train_start_time) / (train_iter + 1) *
                    (total_train_iters - train_iter - 1) / 3600))
            if local_rank == 0:
                writer.add_scalar('throughput_wps', wps, train_iter)
                writer.add_scalar('train_loss', log_avg_loss, train_iter)
                writer.add_scalar('lr', trainer.learning_rate, train_iter)
                writer.add_scalar('grad_norm', log_avg_grad_norm, train_iter)
            # Reinitialize the log variables
            log_start_time = time.time()
            log_avg_loss_l = [mx.np.array(0.0, ctx=ctx) for ctx in ctx_l]
            log_avg_loss_denom_l = [mx.np.array(0.0, ctx=ctx) for ctx in ctx_l]
            log_avg_grad_norm = 0
            log_iter_num = 0
            log_wc_l = [
                mx.np.array(0, dtype=np.int64, ctx=ctx) for ctx in ctx_l
            ]
            log_tgt_wc_l = [
                mx.np.array(0, dtype=np.int64, ctx=ctx) for ctx in ctx_l
            ]

        if (args.max_update > 0 and (train_iter + 1) % args.save_interval_update == 0) \
            or ((train_iter + 1) % num_updates_per_epoch == 0) \
            or train_iter + 1 == total_train_iters:
            epoch_id = (train_iter + 1) // num_updates_per_epoch
            if local_rank == 0:
                if args.max_update <= 0:
                    model.save_parameters(os.path.join(
                        args.save_dir, 'epoch{}.params'.format(epoch_id)),
                                          deduplicate=True)
                else:
                    model.save_parameters(os.path.join(
                        args.save_dir, 'iter{}.params'.format(train_iter + 1)),
                                          deduplicate=True)

            avg_val_loss, ntokens, pred_sentences, pred_lengths, sentence_ids\
                = validation(model, val_data_loader, inference_model, beam_search_sampler,
                             tgt_tokenizer, ctx_l)
            if args.comm_backend == 'horovod':
                flatten_pred_sentences = np.concatenate(pred_sentences, axis=0)
                all_val_loss = hvd.allgather(
                    mx.np.array([avg_val_loss * ntokens],
                                dtype=np.float32,
                                ctx=ctx_l[0]))
                all_ntokens = hvd.allgather(
                    mx.np.array([ntokens], dtype=np.int64, ctx=ctx_l[0]))
                flatten_pred_sentences = hvd.allgather(
                    mx.np.array(flatten_pred_sentences,
                                dtype=np.int32,
                                ctx=ctx_l[0]))
                pred_lengths = hvd.allgather(
                    mx.np.array(pred_lengths, dtype=np.int64, ctx=ctx_l[0]))
                sentence_ids = hvd.allgather(
                    mx.np.array(sentence_ids, dtype=np.int64, ctx=ctx_l[0]))
                avg_val_loss = all_val_loss.asnumpy().sum(
                ) / all_ntokens.asnumpy().sum()
                flatten_pred_sentences = flatten_pred_sentences.asnumpy()
                pred_lengths = pred_lengths.asnumpy()
                sentence_ids = sentence_ids.asnumpy()
                pred_sentences = [None for _ in range(len(sentence_ids))]
                ptr = 0
                assert sentence_ids.min() == 0 and sentence_ids.max(
                ) == len(sentence_ids) - 1
                for sentence_id, length in zip(sentence_ids, pred_lengths):
                    pred_sentences[sentence_id] = flatten_pred_sentences[ptr:(
                        ptr + length)]
                    ptr += length
            if local_rank == 0:
                # Perform detokenization
                pred_sentences_bpe_decode = []
                pred_sentences_raw = []
                for sentence in pred_sentences:
                    bpe_decode_sentence = tgt_tokenizer.decode(
                        sentence.tolist())
                    raw_sentence = base_tgt_tokenizer.decode(
                        bpe_decode_sentence.split())
                    pred_sentences_bpe_decode.append(bpe_decode_sentence)
                    pred_sentences_raw.append(raw_sentence)
                detok_sacrebleu_out = sacrebleu.corpus_bleu(
                    sys_stream=pred_sentences_bpe_decode,
                    ref_streams=[tgt_detok_sentences])
                raw_sacrebleu_out = sacrebleu.corpus_bleu(
                    sys_stream=pred_sentences_raw,
                    ref_streams=[tgt_raw_sentences])
                with open(
                        os.path.join(args.save_dir,
                                     f'epoch{epoch_id}_dev_prediction.txt'),
                        'w') as of:
                    for line in pred_sentences_raw:
                        of.write(line + '\n')
                logging.info(
                    '[Epoch {}][Iter {}/{}] validation loss/ppl={:.4f}/{:.4f}, '
                    'SacreBlEU={}, Detok SacreBLUE={}'.format(
                        epoch_id, train_iter, total_train_iters, avg_val_loss,
                        np.exp(avg_val_loss), raw_sacrebleu_out.score,
                        detok_sacrebleu_out.score))
                writer.add_scalar('valid_loss', avg_val_loss, train_iter)
                writer.add_scalar('valid_bleu', raw_sacrebleu_out.score,
                                  train_iter)

    if args.num_averages > 0:
        model_averager.copy_back(
            param_dict)  # TODO(sxjscience) Rewrite using update
        model.save_parameters(os.path.join(args.save_dir, 'average.params'),
                              deduplicate=True)
示例#12
0
model.hybridize()

# Create optimizer
optimizer_params = {'momentum': args.momentum,
                    'learning_rate': args.lr * hvd.size()}
opt = mx.optimizer.create('sgd', **optimizer_params)

# Initialize parameters
initializer = mx.init.Xavier(rnd_type='gaussian', factor_type="in",
                             magnitude=2)
model.initialize(initializer, ctx=context)

# Horovod: fetch and broadcast parameters
params = model.collect_params()
if params is not None:
    hvd.broadcast_parameters(params, root_rank=0)

# Horovod: create DistributedTrainer, a subclass of gluon.Trainer
trainer = hvd.DistributedTrainer(params, opt,
                                 gradient_predivide_factor=args.gradient_predivide_factor)

# Create loss function and train metric
loss_fn = gluon.loss.SoftmaxCrossEntropyLoss()
metric = mx.metric.Accuracy()

# Train model
for epoch in range(args.epochs):
    tic = time.time()
    train_data.reset()
    metric.reset()
    for nbatch, batch in enumerate(train_data, start=1):
示例#13
0
def fit(args, model, data_loader):
    """
    train a model
    args : argparse returns
    model : the the neural network model
    data_loader : function that returns the train and val data iterators
    """

    start_time = time.time()

    # select gpu for horovod process
    if 'horovod' in args.kv_store:
        args.gpus = [args.gpus[hvd.local_rank()]]

    if args.amp:
        amp.init()

    if args.seed is not None:
        logging.info('Setting seeds to {}'.format(args.seed))
        random.seed(args.seed)
        np.random.seed(args.seed)
        mx.random.seed(args.seed)

    # kvstore
    if 'horovod' in args.kv_store:
        kv = None
        rank = hvd.rank()
        num_workers = hvd.size()
    else:
        kv = mx.kvstore.create(args.kv_store)
        rank = kv.rank
        num_workers = kv.num_workers

    if args.test_io:
        train, val = data_loader(args, kv)

        if args.test_io_mode == 'train':
            data_iter = train
        else:
            data_iter = val

        tic = time.time()
        for i, batch in enumerate(data_iter):
            if isinstance(batch, list):
                for b in batch:
                    for j in b.data:
                        j.wait_to_read()
            else:
                for j in batch.data:
                    j.wait_to_read()
            if (i + 1) % args.disp_batches == 0:
                logging.info('Batch [{}]\tSpeed: {:.2f} samples/sec'.format(
                    i,
                    args.disp_batches * args.batch_size / (time.time() - tic)))
                tic = time.time()
        return

    if not load_model(args, model):
        # all initializers should be specified in the model definition.
        # if not, this will raise an error
        model.initialize(mx.init.Initializer())

    # devices for training
    devs = list(map(mx.gpu, args.gpus))
    model.collect_params().reset_ctx(devs)

    if args.mode == 'pred':
        logging.info('Infering image {}'.format(args.data_pred))
        model_pred(args, model, data.load_image(args, args.data_pred, devs[0]))
        return

    # learning rate
    lr_scheduler = get_lr_scheduler(args)

    optimizer_params = {
        'learning_rate': 0,
        'wd': args.wd,
        'multi_precision': True,
    }

    # Only a limited number of optimizers have 'momentum' property
    has_momentum = {'sgd', 'dcasgd', 'nag', 'signum', 'lbsgd'}
    if args.optimizer in has_momentum:
        optimizer_params['momentum'] = args.mom

    # evaluation metrices
    if not args.no_metrics:
        eval_metrics = ['accuracy']
        eval_metrics.append(mx.metric.create('top_k_accuracy', top_k=5))
    else:
        eval_metrics = []

    train, val = data_loader(args, kv)
    train = BenchmarkingDataIter(train, args.benchmark_iters)
    if val is not None:
        val = BenchmarkingDataIter(val, args.benchmark_iters)

    if 'horovod' in args.kv_store:
        # Fetch and broadcast parameters
        params = model.collect_params()
        if params is not None:
            hvd.broadcast_parameters(params, root_rank=0)
    global_metrics = CompositeMeter()
    if args.mode in ['train_val', 'train']:
        global_metrics.register_metric('train.loss', MinMeter())
        global_metrics.register_metric('train.ips', AvgMeter())

    if args.mode in ['train_val', 'val']:
        global_metrics.register_metric('val.accuracy', MaxMeter())
        global_metrics.register_metric('val.top_k_accuracy_5', MaxMeter())
        global_metrics.register_metric('val.ips', AvgMeter())
        global_metrics.register_metric('val.latency_avg', AvgMeter())

    if args.mode in ['val']:
        global_metrics.register_metric('val.latency_50', PercentileMeter(50))
        global_metrics.register_metric('val.latency_90', PercentileMeter(90))
        global_metrics.register_metric('val.latency_95', PercentileMeter(95))
        global_metrics.register_metric('val.latency_99', PercentileMeter(99))
        global_metrics.register_metric('val.latency_100', PercentileMeter(100))

    # run
    if args.mode in ['train_val', 'train']:
        model_fit(
            args,
            model,
            train,
            begin_epoch=args.begin_epoch,
            num_epoch=args.num_epochs,
            run_epoch=args.run_epochs,
            eval_data=val,
            eval_metric=eval_metrics,
            global_metrics=global_metrics,
            kvstore=args.kv_store,
            kv=kv,
            optimizer=args.optimizer,
            optimizer_params=optimizer_params,
            lr_scheduler=lr_scheduler,
            model_prefix=os.path.join(args.workspace, args.model_prefix),
        )
    elif args.mode == 'val':
        for epoch in range(args.num_epochs):  # loop for benchmarking
            score, duration_stats, durations = model_score(
                args, model, val, eval_metrics, args.kv_store)
            dllogger_data = dict(
                starmap(lambda key, val: ('val.{}'.format(key), val),
                        zip(*score)))
            dllogger_data.update(
                starmap(lambda key, val: ('val.{}'.format(key), val),
                        duration_stats.items()))
            global_metrics.update_dict(dllogger_data)
            for percentile in [50, 90, 95, 99, 100]:
                metric_name = 'val.latency_{}'.format(percentile)
                dllogger_data[metric_name] = np.percentile(
                    durations, percentile)
                global_metrics.update_metric(metric_name, durations)
            dllogger.log(step=(epoch, ), data=dllogger_data)
    else:
        raise ValueError('Wrong mode')

    mx.nd.waitall()
    dllogger.log(tuple(), data=global_metrics.get())
示例#14
0
def train(data_train, data_eval, model):
    """Training function."""
    # backend specific implementation
    param_dict = model.bert.collect_params()
    if backend == 'horovod':
        hvd.broadcast_parameters(param_dict, root_rank=0)

    mlm_metric = nlp.metric.MaskedAccuracy()
    nsp_metric = nlp.metric.MaskedAccuracy()
    mlm_metric.reset()
    nsp_metric.reset()

    logging.debug('Creating distributed trainer...')
    lr = args.lr
    optim_params = {'learning_rate': lr, 'epsilon': 1e-6, 'wd': 0.01}
    if args.dtype == 'float16':
        optim_params['multi_precision'] = True
    if args.optimizer == 'lamb':
        optim_params['bias_correction'] = True

    dynamic_loss_scale = args.dtype == 'float16'
    if dynamic_loss_scale:
        loss_scale_param = {'scale_window': 2000 / num_workers, 'init_scale': 1}
    else:
        loss_scale_param = None

    # backend specific implementation
    if backend == 'horovod':
        trainer = hvd.DistributedTrainer(param_dict, args.optimizer, optim_params)
    elif backend == 'byteps':
        trainer = bps.DistributedTrainer(param_dict, args.optimizer, optim_params)
    else:
        trainer = mx.gluon.Trainer(param_dict, args.optimizer, optim_params,
                                   update_on_kvstore=False)
    fp16_trainer = FP16Trainer(trainer, dynamic_loss_scale=dynamic_loss_scale,
                               loss_scaler_params=loss_scale_param)

    if args.start_step:
        state_path = os.path.join(args.ckpt_dir, '%07d.states.%02d'%(args.start_step, local_rank))
        logging.info('Loading trainer state from %s', state_path)
        nlp.utils.load_states(trainer, state_path)

    accumulate = args.accumulate
    num_train_steps = args.num_steps
    warmup_ratio = args.warmup_ratio
    num_warmup_steps = int(num_train_steps * warmup_ratio)
    params = [p for p in param_dict.values() if p.grad_req != 'null']

    # Do not apply weight decay on LayerNorm and bias terms
    for _, v in model.collect_params('.*beta|.*gamma|.*bias').items():
        v.wd_mult = 0.0
    if accumulate > 1:
        for p in params:
            p.grad_req = 'add'

    train_begin_time = time.time()
    begin_time = time.time()
    running_mlm_loss, running_nsp_loss = 0, 0
    local_mlm_loss, local_num_masks = 0, mx.nd.array([0], ctx=ctxs[0])
    running_num_tks = 0
    batch_num = 0
    step_num = args.start_step

    logging.debug('Training started')
    logging.info('Generating the first batch of data, which may take a few minutes ...')

    # create dummy data loader if needed
    parallel_model = DataParallelBERT(model, trainer=fp16_trainer)
    num_ctxes = len(ctxs)
    parallel = nlp.utils.Parallel(num_ctxes if num_ctxes > 1 else 0, parallel_model)

    if backend == 'byteps':
        bps.byteps_declare_tensor("local_num_masks")
        bps.byteps_push_pull(local_num_masks, is_average=False, name="local_num_masks", priority=0)
        logging.debug('Broadcast local_num_masks tensor')
        next_batch = next(iter(get_dummy_dataloader(batch_size, args.max_seq_length, args.max_predictions_per_seq)))
        data_list = list(split_and_load(next_batch, ctxs))
        parallel.put(data_list[0])
        parallel.get()
        trainer._init_params()

    while step_num < num_train_steps:

        data_train_iter = iter(data_train)
        end_of_batch = False
        next_data_batch = next(data_train_iter)
        while not end_of_batch:
            data_batch = next_data_batch
            if step_num >= num_train_steps:
                break
            if batch_num % accumulate == 0:
                step_num += 1
                # if accumulate > 1, grad_req is set to 'add', and zero_grad is required
                if accumulate > 1:
                    param_dict.zero_grad()
                # update learning rate
                if step_num <= num_warmup_steps:
                    new_lr = lr * step_num / num_warmup_steps
                else:
                    offset = lr * step_num / num_train_steps
                    new_lr = lr - offset
                trainer.set_learning_rate(new_lr)
                if args.profile:
                    profile(step_num, 10, 14, profile_name=args.profile + str(rank))
                if early_stop and step_num == 10:
                    mx.nd.waitall()
                    exit()

            # load data
            data_list = list(split_and_load(data_batch, ctxs))

            ns_label_list, ns_pred_list = [], []
            mask_label_list, mask_pred_list, mask_weight_list = [], [], []

            with mx.autograd.record():
                num_data = len(data_list)
                for i in range(num_data):
                    parallel.put(data_list[i])
                for _ in range(num_data):
                    (next_sentence_label, classified, masked_id,
                     decoded, masked_weight, ls1, ls2, valid_length, num_masks) = parallel.get()
                    ns_label_list.append(next_sentence_label)
                    ns_pred_list.append(classified)
                    mask_label_list.append(masked_id)
                    mask_pred_list.append(decoded)
                    mask_weight_list.append(masked_weight)
                    local_num_masks += num_masks
                    local_mlm_loss += ls1
                    running_num_tks += valid_length.sum()
            # pre fetch next batch
            try:
                next_data_batch = next(data_train_iter)
            except StopIteration:
                end_of_batch = True

            # update
            if (batch_num + 1) % accumulate == 0:
                running_mlm_loss += local_mlm_loss / local_num_masks
                if backend == 'horovod':
                    hvd.allreduce_(local_num_masks, average=False, name='local_num_masks')
                elif backend == 'byteps':
                    bps.byteps_push_pull(local_num_masks, is_average=False,
                                         name="local_num_masks", priority=0)
                # because byteps implicitly set scale /= num_workers
                fp16_trainer.step(local_num_masks * num_workers, max_norm=local_num_masks,
                                  num_ctxs=len(ctxs) * num_workers)
                local_num_masks, local_mlm_loss = 0, 0
            # update metrics
            if args.no_compute_acc:
                for mask_pred_i in mask_pred_list:
                    mask_pred_i.wait_to_read()
            else:
                nsp_metric.update(ns_label_list, ns_pred_list)
                mlm_metric.update(mask_label_list, mask_pred_list, mask_weight_list)

            # logging
            if (step_num + 1) % (args.log_interval) == 0 and (batch_num + 1) % accumulate == 0:
                if args.no_compute_acc:
                    log_noacc(begin_time, running_num_tks, running_mlm_loss,
                              0, step_num, trainer, args.log_interval)
                else:
                    log(begin_time, running_num_tks, running_mlm_loss / accumulate,
                        running_nsp_loss / accumulate, step_num, mlm_metric, nsp_metric,
                        trainer, args.log_interval)
                    mlm_metric.reset_local()
                    nsp_metric.reset_local()
                begin_time = time.time()
                running_mlm_loss = running_nsp_loss = running_num_tks = 0

            # saving checkpoints
            if (step_num + 1) % args.ckpt_interval == 0 and (batch_num + 1) % accumulate == 0:
#                if is_master_node:
#                    save_states(step_num, trainer, args.ckpt_dir, local_rank)
#                    if local_rank == 0:
#                        save_parameters(step_num, model.bert, args.ckpt_dir)
                if (step_num + 1) % args.eval_interval == 0 and data_eval:
                    # eval data is always based on a fixed npz file.
                    dataset_eval = get_pretrain_data_npz(data_eval, batch_size_eval,
                                                         1, False, 1, vocab)
                    evaluate(dataset_eval, model, ctxs, args.log_interval, args.dtype, rank, num_workers)

            batch_num += 1

#    if is_master_node:
#        save_states(step_num, trainer, args.ckpt_dir, local_rank)
#        if local_rank == 0:
#            save_parameters(step_num, model, args.ckpt_dir)
    mx.nd.waitall()
    train_end_time = time.time()
    logging.info('Train cost={:.1f}s'.format(train_end_time - train_begin_time))
示例#15
0
def train_gluon():
    def evaluate(epoch):
        if not args.use_rec:
            return

        val_data.reset()
        acc_top1 = mx.metric.Accuracy()
        acc_top5 = mx.metric.TopKAccuracy(5)
        for _, batch in enumerate(val_data):
            data, label = get_data_label(batch, context)
            output = net(data.astype(args.dtype, copy=False))
            acc_top1.update([label], [output])
            acc_top5.update([label], [output])

        top1_name, top1_acc = acc_top1.get()
        top5_name, top5_acc = acc_top5.get()
        logging.info('Epoch[%d] Rank[%d]\tValidation-%s=%f\tValidation-%s=%f',
                     epoch, rank, top1_name, top1_acc, top5_name, top5_acc)

    # Hybridize and initialize model
    net.hybridize()
    net.initialize(initializer, ctx=context)

    # Horovod: fetch and broadcast parameters
    params = net.collect_params()
    if params is not None:
        hvd.broadcast_parameters(params, root_rank=0)

    # Create optimizer
    optimizer_params = {
        'wd': args.wd,
        'momentum': args.momentum,
        'lr_scheduler': lr_sched
    }
    if args.dtype == 'float16':
        optimizer_params['multi_precision'] = True
    opt = mx.optimizer.create('sgd', **optimizer_params)

    # Horovod: create DistributedTrainer, a subclass of gluon.Trainer
    trainer = hvd.DistributedTrainer(
        params, opt, gradient_predivide_factor=args.gradient_predivide_factor)

    # Create loss function and train metric
    loss_fn = gluon.loss.SoftmaxCrossEntropyLoss()
    metric = mx.metric.Accuracy()

    # Train model
    for epoch in range(args.num_epochs):
        tic = time.time()
        if args.use_rec:
            train_data.reset()
        metric.reset()

        btic = time.time()
        for nbatch, batch in enumerate(train_data, start=1):
            data, label = get_data_label(batch, context)
            with autograd.record():
                output = net(data.astype(args.dtype, copy=False))
                loss = loss_fn(output, label)
            loss.backward()
            trainer.step(batch_size)

            metric.update([label], [output])
            if args.log_interval and nbatch % args.log_interval == 0:
                name, acc = metric.get()
                logging.info('Epoch[%d] Rank[%d] Batch[%d]\t%s=%f\tlr=%f',
                             epoch, rank, nbatch, name, acc,
                             trainer.learning_rate)
                if rank == 0:
                    batch_speed = num_workers * batch_size * args.log_interval / (
                        time.time() - btic)
                    logging.info(
                        'Epoch[%d] Batch[%d]\tSpeed: %.2f samples/sec', epoch,
                        nbatch, batch_speed)
                btic = time.time()

        # Report metrics
        elapsed = time.time() - tic
        _, acc = metric.get()
        logging.info(
            'Epoch[%d] Rank[%d] Batch[%d]\tTime cost=%.2f\tTrain-accuracy=%f',
            epoch, rank, nbatch, elapsed, acc)
        if rank == 0:
            epoch_speed = num_workers * batch_size * nbatch / elapsed
            logging.info('Epoch[%d]\tSpeed: %.2f samples/sec', epoch,
                         epoch_speed)

        # Evaluate performance
        if args.eval_frequency and (epoch + 1) % args.eval_frequency == 0:
            evaluate(epoch)

        # Save model
        if args.save_frequency and (epoch + 1) % args.save_frequency == 0:
            net.export('%s-%d' % (args.model, rank), epoch=epoch)

    # Evaluate performance at the end of training
    evaluate(epoch)
示例#16
0
                    'rescale_grad': 1.0 / args.batch_size}
opt = mx.optimizer.create('sgd', **optimizer_params)

# Horovod: wrap optimizer with DistributedOptimizer
opt = hvd.DistributedOptimizer(opt)

initializer = mx.init.Xavier(rnd_type='gaussian', factor_type="in",
                             magnitude=2)
model.bind(data_shapes=train_iter.provide_data,
           label_shapes=train_iter.provide_label)
model.init_params(initializer)

# Horovod: fetch and broadcast parameters
(arg_params, aux_params) = model.get_params()
if arg_params is not None:
    hvd.broadcast_parameters(arg_params, root_rank=0)
if aux_params is not None:
    hvd.broadcast_parameters(aux_params, root_rank=0)
model.set_params(arg_params=arg_params, aux_params=aux_params)

model.fit(train_iter,  # train data
          kvstore=None,  # no kvstore
          eval_data=val_iter,  # validation data
          optimizer=opt,  # use SGD to train
          eval_metric='acc',  # report accuracy during training
          batch_end_callback=mx.callback.Speedometer(args.batch_size),
          num_epoch=args.epochs)  # train for at most 10 dataset passes

# Step 5: evaluate model accuracy
acc = mx.metric.Accuracy()
model.score(val_iter, acc)
    def train(ctx):
        if isinstance(ctx, mx.Context):
            ctx = [ctx]
        if opt.resume_params == '':
            net.initialize(mx.init.MSRAPrelu(), ctx=ctx)

        if opt.no_wd:
            for k, v in net.collect_params('.*beta|.*gamma|.*bias').items():
                v.wd_mult = 0.0

        hvd.broadcast_parameters(net.collect_params(), root_rank=0)

        # trainer = gluon.Trainer(net.collect_params(), optimizer, optimizer_params)

        # trainer = hvd.DistributedTrainer(
        #     net.collect_params(),  
        #     optimizer,
        #     optimizer_params)

        if opt.trainer == 'sgd':
            trainer = SGDTrainer(
                net.collect_params(),  
                optimizer, optimizer_params)
        elif opt.trainer == 'efsgd':
            trainer = EFSGDTrainerV1(
                net.collect_params(),  
                'EFSGDV1', optimizer_params, 
                input_sparse_ratio=1./opt.input_sparse_1, 
                output_sparse_ratio=1./opt.output_sparse_1, 
                layer_sparse_ratio=1./opt.layer_sparse_1)
        elif opt.trainer == 'qsparselocalsgd':
            trainer = QSparseLocalSGDTrainerV1(
                net.collect_params(),  
                optimizer, optimizer_params, 
                input_sparse_ratio=1./opt.input_sparse_1, 
                output_sparse_ratio=1./opt.output_sparse_1, 
                layer_sparse_ratio=1./opt.layer_sparse_1,
                local_sgd_interval=opt.local_sgd_interval)
        elif opt.trainer == 'ersgd':
            trainer = ERSGDTrainerV2(
                net.collect_params(),  
                optimizer, optimizer_params, 
                input_sparse_ratio=1./opt.input_sparse_1, 
                output_sparse_ratio=1./opt.output_sparse_1, 
                layer_sparse_ratio=1./opt.layer_sparse_1)
        elif opt.trainer == 'partiallocalsgd':
            trainer = PartialLocalSGDTrainerV1(
                net.collect_params(),  
                optimizer, optimizer_params, 
                input_sparse_ratio=1./opt.input_sparse_1, 
                output_sparse_ratio=1./opt.output_sparse_1, 
                layer_sparse_ratio=1./opt.layer_sparse_1,
                local_sgd_interval=opt.local_sgd_interval)
        elif opt.trainer == 'ersgd2':
            trainer = ERSGD2TrainerV2(
                net.collect_params(),  
                optimizer, optimizer_params, 
                input_sparse_ratio_1=1./opt.input_sparse_1, 
                output_sparse_ratio_1=1./opt.output_sparse_1, 
                layer_sparse_ratio_1=1./opt.layer_sparse_1,
                input_sparse_ratio_2=1./opt.input_sparse_2, 
                output_sparse_ratio_2=1./opt.output_sparse_2, 
                layer_sparse_ratio_2=1./opt.layer_sparse_2,
                local_sgd_interval=opt.local_sgd_interval)
        else:
            trainer = SGDTrainer(
                net.collect_params(),  
                optimizer, optimizer_params)

        if opt.resume_states != '':
            trainer.load_states(opt.resume_states)

        if opt.label_smoothing or opt.mixup:
            sparse_label_loss = False
        else:
            sparse_label_loss = True
        if distillation:
            L = gcv.loss.DistillationSoftmaxCrossEntropyLoss(temperature=opt.temperature,
                                                                 hard_weight=opt.hard_weight,
                                                                 sparse_label=sparse_label_loss)
        else:
            L = gluon.loss.SoftmaxCrossEntropyLoss(sparse_label=sparse_label_loss)

        best_val_score = 1

        for epoch in range(opt.resume_epoch, opt.num_epochs):
            tic = time.time()
            if opt.use_rec:
                train_data.reset()
            # train_metric.reset()
            train_loss = 0
            btic = time.time()

            # test speed
            if opt.test_speed > 0:
                n_repeats = opt.test_speed
            elif opt.test_speed == 0:
                n_repeats = 1
            else:
                n_repeats = 0

            for i, batch in enumerate(train_data):
                
                # test speed
                if n_repeats == 0 and not (i+1)%opt.log_interval:
                    print('[Epoch %d] # batch: %d'%(epoch, i))
                    continue

                data, label = batch_fn(batch, ctx)

                for j in range(n_repeats):

                    if opt.mixup:
                        lam = np.random.beta(opt.mixup_alpha, opt.mixup_alpha)
                        if epoch >= opt.num_epochs - opt.mixup_off_epoch:
                            lam = 1
                        data = [lam*X + (1-lam)*X[::-1] for X in data]

                        if opt.label_smoothing:
                            eta = 0.1
                        else:
                            eta = 0.0
                        label = mixup_transform(label, classes, lam, eta)

                    elif opt.label_smoothing:
                        hard_label = label
                        label = smooth(label, classes)

                    if distillation:
                        teacher_prob = [nd.softmax(teacher(X.astype(opt.dtype, copy=False)) / opt.temperature) \
                                        for X in data]

                    with ag.record():
                        outputs = [net(X.astype(opt.dtype, copy=False)) for X in data]
                        if distillation:
                            loss = [L(yhat.astype('float32', copy=False),
                                    y.astype('float32', copy=False),
                                    p.astype('float32', copy=False)) for yhat, y, p in zip(outputs, label, teacher_prob)]
                        else:
                            loss = [L(yhat, y.astype(opt.dtype, copy=False)) for yhat, y in zip(outputs, label)]
                    for l in loss:
                        l.backward()
                    trainer.step(batch_size)

                    # if opt.mixup:
                    #     output_softmax = [nd.SoftmaxActivation(out.astype('float32', copy=False)) \
                    #                     for out in outputs]
                    #     train_metric.update(label, output_softmax)
                    # else:
                    #     if opt.label_smoothing:
                    #         train_metric.update(hard_label, outputs)
                    #     else:
                    #         train_metric.update(label, outputs)

                    step_loss = sum([l.sum().asscalar() for l in loss])

                    train_loss += step_loss

                    if opt.log_interval and not (i+j+1)%opt.log_interval:
                        # train_metric_name, train_metric_score = train_metric.get()
                        if hvd.rank() == 0:
                            # logger.info('Epoch[%d] Batch[%d] Speed: %f samples/sec %s=%f lr=%f comm=%f'%(
                            #             epoch, i, batch_size*hvd.size()*opt.log_interval/(time.time()-btic),
                            #             train_metric_name, train_metric_score, trainer.learning_rate, trainer._comm_counter/1e6))
                            # print('Epoch[%d] Batch[%d] Speed: %f samples/sec %s=%f lr=%f comm=%f'%(
                            #             epoch, i, batch_size*hvd.size()*opt.log_interval/(time.time()-btic),
                            #             train_metric_name, train_metric_score, trainer.learning_rate, trainer._comm_counter/1e6))
                            print('Epoch[%d] Batch[%d] Speed: %f samples/sec %s=%f lr=%f comm=%f'%(
                                        epoch, i, batch_size*hvd.size()*opt.log_interval/(time.time()-btic),
                                        'loss', step_loss/batch_size, trainer.learning_rate, trainer._comm_counter/1e6))
                        btic = time.time()

            mx.nd.waitall()
            toc = time.time()

            if n_repeats == 0:
                allreduce_array_nd = mx.nd.array([i])
                hvd.allreduce_(allreduce_array_nd, name='allreduce_array', average=True)
                mx.nd.waitall()
                print('[Epoch %d] # total batch: %d'%(epoch, i))
                continue

            train_metric_name, train_metric_score = train_metric.get()
            throughput = int(batch_size * i /(toc - tic) * hvd.size())

            train_loss /= (batch_size * i)

            if opt.trainer == 'ersgd' or opt.trainer == 'qsparselocalsgd' or opt.trainer == 'ersgd2' or opt.trainer == 'partiallocalsgd':
                allreduce_for_val = True
            else:
                allreduce_for_val = False

            if allreduce_for_val:
                trainer.pre_test()
            # err_train_tic = time.time()
            # err_top1_train, err_top5_train = test(ctx, train_data, val=False)
            err_val_tic = time.time()
            err_top1_val, err_top5_val = test(ctx, val_data, val=True)
            err_val_toc = time.time()
            if allreduce_for_val:
                trainer.post_test()

            mx.nd.waitall()

            # allreduce the results
            allreduce_array_nd = mx.nd.array([train_loss, err_top1_val, err_top5_val])
            hvd.allreduce_(allreduce_array_nd, name='allreduce_array', average=True)
            allreduce_array_np = allreduce_array_nd.asnumpy()
            train_loss = np.asscalar(allreduce_array_np[0])
            err_top1_val = np.asscalar(allreduce_array_np[1])
            err_top5_val = np.asscalar(allreduce_array_np[2])

            if hvd.rank() == 0:
                # logger.info('[Epoch %d] training: %s=%f'%(epoch, train_metric_name, train_metric_score))
                logger.info('[Epoch %d] training: loss=%f'%(epoch, train_loss))
                logger.info('[Epoch %d] speed: %d samples/sec training-time: %f comm: %f'%(epoch, throughput, toc-tic, trainer._comm_counter/1e6))
                logger.info('[Epoch %d] validation: err-top1=%f err-top5=%f err-time=%f'%(epoch, err_top1_val, err_top5_val, err_val_toc - err_val_tic))
                trainer._comm_counter = 0

            if err_top1_val < best_val_score:
                best_val_score = err_top1_val
                # if hvd.local_rank() == 0:
                #     net.save_parameters('%s/%.4f-imagenet-%s-%d-best.params'%(save_dir, best_val_score, model_name, epoch))
                #     trainer.save_states('%s/%.4f-imagenet-%s-%d-best.states'%(save_dir, best_val_score, model_name, epoch))

            if save_frequency and save_dir and (epoch + 1) % save_frequency == 0:
                if hvd.local_rank() == 0:
                    net.save_parameters('%s/imagenet-%s-%d.params'%(save_dir, model_name, epoch))
                    trainer.save_states('%s/imagenet-%s-%d.states'%(save_dir, model_name, epoch))
示例#18
0
def train(net, train_data, val_data, eval_metric, ctx, args):
    """Training pipeline"""
    net.collect_params().reset_ctx(ctx)
    if args.no_wd:
        for k, v in net.collect_params('.*beta|.*gamma|.*bias').items():
            v.wd_mult = 0.0

    if args.label_smooth:
        net._target_generator._label_smooth = True

    if args.lr_decay_period > 0:
        lr_decay_epoch = list(
            range(args.lr_decay_period, args.epochs, args.lr_decay_period))
    else:
        lr_decay_epoch = [int(i) for i in args.lr_decay_epoch.split(',')]
    lr_decay_epoch = [e - args.warmup_epochs for e in lr_decay_epoch]
    num_batches = args.num_samples // args.batch_size
    lr_scheduler = LRSequential([
        LRScheduler('linear',
                    base_lr=0,
                    target_lr=args.lr,
                    nepochs=args.warmup_epochs,
                    iters_per_epoch=num_batches),
        LRScheduler(args.lr_mode,
                    base_lr=args.lr,
                    nepochs=args.epochs - args.warmup_epochs,
                    iters_per_epoch=num_batches,
                    step_epoch=lr_decay_epoch,
                    step_factor=args.lr_decay,
                    power=2),
    ])

    if args.horovod:
        hvd.broadcast_parameters(net.collect_params(), root_rank=0)
        trainer = hvd.DistributedTrainer(net.collect_params(), 'sgd', {
            'wd': args.wd,
            'momentum': args.momentum,
            'lr_scheduler': lr_scheduler
        })
    else:
        trainer = gluon.Trainer(
            net.collect_params(),
            'sgd', {
                'wd': args.wd,
                'momentum': args.momentum,
                'lr_scheduler': lr_scheduler
            },
            kvstore='local',
            update_on_kvstore=(False if args.amp else None))

    if args.amp:
        amp.init_trainer(trainer)

    # targets
    sigmoid_ce = gluon.loss.SigmoidBinaryCrossEntropyLoss(from_sigmoid=False)
    l1_loss = gluon.loss.L1Loss()

    # metrics
    obj_metrics = mx.metric.Loss('ObjLoss')
    center_metrics = mx.metric.Loss('BoxCenterLoss')
    scale_metrics = mx.metric.Loss('BoxScaleLoss')
    cls_metrics = mx.metric.Loss('ClassLoss')

    # set up logger
    logging.basicConfig()
    logger = logging.getLogger()
    logger.setLevel(logging.INFO)
    log_file_path = args.save_prefix + '_train.log'
    log_dir = os.path.dirname(log_file_path)
    if log_dir and not os.path.exists(log_dir):
        os.makedirs(log_dir)
    fh = logging.FileHandler(log_file_path)
    logger.addHandler(fh)
    logger.info(args)
    logger.info('Start training from [Epoch {}]'.format(args.start_epoch))
    best_map = [0]
    for epoch in range(args.start_epoch, args.epochs):
        if args.mixup:
            # TODO(zhreshold): more elegant way to control mixup during runtime
            try:
                train_data._dataset.set_mixup(np.random.beta, 1.5, 1.5)
            except AttributeError:
                train_data._dataset._data.set_mixup(np.random.beta, 1.5, 1.5)
            if epoch >= args.epochs - args.no_mixup_epochs:
                try:
                    train_data._dataset.set_mixup(None)
                except AttributeError:
                    train_data._dataset._data.set_mixup(None)

        tic = time.time()
        btic = time.time()
        mx.nd.waitall()
        net.hybridize()
        for i, batch in enumerate(train_data):
            data = gluon.utils.split_and_load(batch[0],
                                              ctx_list=ctx,
                                              batch_axis=0)
            # objectness, center_targets, scale_targets, weights, class_targets
            fixed_targets = [
                gluon.utils.split_and_load(batch[it],
                                           ctx_list=ctx,
                                           batch_axis=0) for it in range(1, 6)
            ]
            gt_boxes = gluon.utils.split_and_load(batch[6],
                                                  ctx_list=ctx,
                                                  batch_axis=0)
            sum_losses = []
            obj_losses = []
            center_losses = []
            scale_losses = []
            cls_losses = []
            with autograd.record():
                for ix, x in enumerate(data):
                    obj_loss, center_loss, scale_loss, cls_loss = net(
                        x, gt_boxes[ix], *[ft[ix] for ft in fixed_targets])
                    sum_losses.append(obj_loss + center_loss + scale_loss +
                                      cls_loss)
                    obj_losses.append(obj_loss)
                    center_losses.append(center_loss)
                    scale_losses.append(scale_loss)
                    cls_losses.append(cls_loss)
                if args.amp:
                    with amp.scale_loss(sum_losses, trainer) as scaled_loss:
                        autograd.backward(scaled_loss)
                else:
                    autograd.backward(sum_losses)
            trainer.step(batch_size)
            if (not args.horovod or hvd.rank() == 0):
                obj_metrics.update(0, obj_losses)
                center_metrics.update(0, center_losses)
                scale_metrics.update(0, scale_losses)
                cls_metrics.update(0, cls_losses)
                if args.log_interval and not (i + 1) % args.log_interval:
                    name1, loss1 = obj_metrics.get()
                    name2, loss2 = center_metrics.get()
                    name3, loss3 = scale_metrics.get()
                    name4, loss4 = cls_metrics.get()
                    logger.info(
                        '[Epoch {}][Batch {}], LR: {:.2E}, Speed: {:.3f} samples/sec, {}={:.3f}, {}={:.3f}, {}={:.3f}, {}={:.3f}'
                        .format(epoch, i, trainer.learning_rate,
                                args.batch_size / (time.time() - btic), name1,
                                loss1, name2, loss2, name3, loss3, name4,
                                loss4))
                btic = time.time()

        if (not args.horovod or hvd.rank() == 0):
            name1, loss1 = obj_metrics.get()
            name2, loss2 = center_metrics.get()
            name3, loss3 = scale_metrics.get()
            name4, loss4 = cls_metrics.get()
            logger.info(
                '[Epoch {}] Training cost: {:.3f}, {}={:.3f}, {}={:.3f}, {}={:.3f}, {}={:.3f}'
                .format(epoch, (time.time() - tic), name1, loss1, name2, loss2,
                        name3, loss3, name4, loss4))
            if not (epoch + 1) % args.val_interval:
                # consider reduce the frequency of validation to save time
                map_name, mean_ap = validate(net, val_data, ctx, eval_metric)
                val_msg = '\n'.join(
                    ['{}={}'.format(k, v) for k, v in zip(map_name, mean_ap)])
                logger.info('[Epoch {}] Validation: \n{}'.format(
                    epoch, val_msg))
                current_map = float(mean_ap[-1])
            else:
                current_map = 0.
            save_params(net, best_map, current_map, epoch, args.save_interval,
                        args.save_prefix)
示例#19
0
        return rpn_loss1_metric, rpn_loss2_metric, rcnn_loss1_metric, rcnn_loss2_metric, \
               rpn_acc_metric, rpn_l1_loss_metric, rcnn_acc_metric, rcnn_l1_loss_metric


def train(net, train_data, val_data, eval_metric, batch_size, ctx, args):
    """Training pipeline"""
    kv = mx.kvstore.create(args.kv_store)
    net.collect_params().setattr('grad_req', 'null')
    net.collect_train_params().setattr('grad_req', 'write')
<<<<<<< HEAD

=======
    optimizer_params = {'learning_rate': args.lr, 'wd': args.wd, 'momentum': args.momentum}
>>>>>>> origin/master
    if args.horovod:
        hvd.broadcast_parameters(net.collect_params(), root_rank=0)
        trainer = hvd.DistributedTrainer(
            net.collect_train_params(),  # fix batchnorm, fix first stage, etc...
            'sgd',
            optimizer_params)
    else:
        trainer = gluon.Trainer(
            net.collect_train_params(),  # fix batchnorm, fix first stage, etc...
            'sgd',
            optimizer_params,
            update_on_kvstore=(False if args.amp else None), kvstore=kv)

    if args.amp:
        amp.init_trainer(trainer)

示例#20
0
def train(args):
    store, num_parts, rank, local_rank, is_master_node, ctx_l = init_comm(
        args.comm_backend, args.gpus)
    src_tokenizer = create_tokenizer(args.src_tokenizer,
                                     args.src_subword_model_path,
                                     args.src_vocab_path)
    tgt_tokenizer = create_tokenizer(args.tgt_tokenizer,
                                     args.tgt_subword_model_path,
                                     args.tgt_vocab_path)
    src_vocab = src_tokenizer.vocab
    tgt_vocab = tgt_tokenizer.vocab
    train_src_data, train_tgt_data = load_dataset_with_cache(
        args.train_src_corpus, args.train_tgt_corpus, src_tokenizer,
        tgt_tokenizer, args.overwrite_cache)
    dev_src_data, dev_tgt_data = load_dataset_with_cache(
        args.dev_src_corpus, args.dev_tgt_corpus, src_tokenizer, tgt_tokenizer,
        args.overwrite_cache)
    data_train = gluon.data.SimpleDataset([
        (src_tokens, tgt_tokens, len(src_tokens), len(tgt_tokens), i)
        for i, (src_tokens,
                tgt_tokens) in enumerate(zip(train_src_data, train_tgt_data))
    ])
    data_val = gluon.data.SimpleDataset([
        (src_tokens, tgt_tokens, len(src_tokens), len(tgt_tokens), i)
        for i, (src_tokens,
                tgt_tokens) in enumerate(zip(dev_src_data, dev_tgt_data))
    ])
    # Construct the model + loss function
    if args.cfg.endswith('.yml'):
        cfg = TransformerModel.get_cfg().clone_merge(args.cfg)
    else:
        cfg = TransformerModel.get_cfg(args.cfg)
    cfg.defrost()
    cfg.MODEL.src_vocab_size = len(src_vocab)
    cfg.MODEL.tgt_vocab_size = len(tgt_vocab)
    if args.fp16:
        raise NotImplementedError


#        cfg.MODEL.dtype = 'float16'
    cfg.freeze()
    model = TransformerModel.from_cfg(cfg)
    model.initialize(mx.init.Xavier(magnitude=args.magnitude), ctx=ctx_l)
    model.hybridize()
    if local_rank == 0:
        logging.info(model)
    with open(os.path.join(args.save_dir, 'config.yml'), 'w') as cfg_f:
        cfg_f.write(cfg.dump())
    label_smooth_loss = LabelSmoothCrossEntropyLoss(
        num_labels=len(tgt_vocab),
        alpha=args.label_smooth_alpha,
        from_logits=False)
    label_smooth_loss.hybridize()
    rescale_loss = 100.0

    if args.comm_backend == 'horovod':
        hvd.broadcast_parameters(model.collect_params(), root_rank=0)

    # Construct the trainer
    # TODO(sxjscience) Support AMP
    if args.lr is None:
        base_lr = 2.0 / math.sqrt(args.num_units) / math.sqrt(
            args.warmup_steps)
    else:
        base_lr = args.lr
    lr_scheduler = InverseSquareRootScheduler(
        warmup_steps=args.warmup_steps,
        base_lr=base_lr,
        warmup_init_lr=args.warmup_init_lr)
    trainer_settings = (model.collect_params(), 'adam', {
        'learning_rate': args.lr,
        'beta1': 0.9,
        'beta2': 0.98,
        'epsilon': 1e-9,
        'lr_scheduler': lr_scheduler
    })
    if args.comm_backend == 'horovod':
        trainer = hvd.DistributedTrainer(*trainer_settings)
    else:
        trainer = gluon.Trainer(*trainer_settings)
    # Load Data
    if args.sampler == 'BoundedBudgetSampler':
        train_batch_sampler = BoundedBudgetSampler(
            lengths=[(ele[2], ele[3]) for ele in data_train],
            max_num_tokens=args.max_num_tokens,
            max_num_sentences=args.max_num_sentences,
            seed=args.seed,
            num_parts=num_parts,
            part_index=rank)
    elif args.sampler == 'FixedBucketSampler':
        if args.comm_backend == 'horovod':
            raise NotImplementedError(
                'FixedBucketSampler does not support horovod at present')

        if args.bucket_scheme == 'constant':
            bucket_scheme = ConstWidthBucket()
        elif args.bucket_scheme == 'linear':
            bucket_scheme = LinearWidthBucket()
        elif args.bucket_scheme == 'exp':
            bucket_scheme = ExpWidthBucket(bucket_len_step=1.2)
        else:
            raise NotImplementedError
        # TODO(sxjscience) Support auto-bucket-size tuning
        train_batch_sampler = FixedBucketSampler(lengths=[
            (ele[2], ele[3]) for ele in data_train
        ],
                                                 batch_size=args.batch_size,
                                                 num_buckets=args.num_buckets,
                                                 ratio=args.bucket_ratio,
                                                 shuffle=True,
                                                 use_average_length=True,
                                                 bucket_scheme=bucket_scheme,
                                                 seed=args.seed)
    else:
        raise NotImplementedError

    if local_rank == 0:
        logging.info(train_batch_sampler)

    batchify_fn = bf.Tuple(bf.Pad(), bf.Pad(), bf.Stack(), bf.Stack(),
                           bf.Stack())
    train_data_loader = gluon.data.DataLoader(
        data_train,
        batch_sampler=train_batch_sampler,
        batchify_fn=batchify_fn,
        num_workers=0)

    val_data_loader = gluon.data.DataLoader(data_val,
                                            batch_size=args.val_batch_size,
                                            batchify_fn=batchify_fn,
                                            num_workers=0,
                                            shuffle=False)
    for v in model.collect_params().values():
        if v.grad_req != 'null':
            v.grad_req = 'add'
    model.zero_grad()
    model_averager = AverageSGDTracker(model.collect_params())
    log_start_time = time.time()
    num_params, num_fixed_params = None, None
    # TODO(sxjscience) Add a log metric class
    accum_count = 0
    loss_denom = 0
    n_train_iters = 0
    log_wc = 0
    log_avg_loss = 0.0
    log_loss_denom = 0
    epoch_id = 0
    while (args.epochs < 0 or epoch_id < args.epochs
           ):  # when args.epochs < 0, the model will keep training
        n_epoch_train_iters = 0
        processed_batch_num = 0
        train_multi_data_loader = grouper(train_data_loader, len(ctx_l))
        is_last_batch = False
        sample_data_l = next(train_multi_data_loader)
        while not is_last_batch:
            processed_batch_num += len(sample_data_l)
            loss_l = []
            for sample_data, ctx in zip(sample_data_l, ctx_l):
                if sample_data is None:
                    continue
                src_token_ids, tgt_token_ids, src_valid_length, tgt_valid_length, sample_ids = sample_data
                src_wc, tgt_wc, bs = src_valid_length.sum(
                ), tgt_valid_length.sum(), src_token_ids.shape[0]
                loss_denom += tgt_wc - bs
                log_loss_denom += tgt_wc - bs
                log_wc += src_wc + tgt_wc
                src_token_ids = src_token_ids.as_in_ctx(ctx)
                tgt_token_ids = tgt_token_ids.as_in_ctx(ctx)
                src_valid_length = src_valid_length.as_in_ctx(ctx)
                tgt_valid_length = tgt_valid_length.as_in_ctx(ctx)
                with mx.autograd.record():
                    tgt_pred = model(src_token_ids, src_valid_length,
                                     tgt_token_ids[:, :-1],
                                     tgt_valid_length - 1)
                    tgt_labels = tgt_token_ids[:, 1:]
                    loss = label_smooth_loss(tgt_pred, tgt_labels)
                    loss = mx.npx.sequence_mask(
                        loss,
                        sequence_length=tgt_valid_length - 1,
                        use_sequence_length=True,
                        axis=1)
                    loss_l.append(loss.sum() / rescale_loss)
            for l in loss_l:
                l.backward()
            accum_count += 1
            try:
                sample_data_l = next(train_multi_data_loader)
            except StopIteration:
                is_last_batch = True
            if local_rank == 0 and num_params is None:
                num_params, num_fixed_params = count_parameters(
                    model.collect_params())
                logging.info(
                    'Total Number of Parameters (not-fixed/fixed): {}/{}'.
                    format(num_params, num_fixed_params))
            sum_loss = sum([l.as_in_ctx(mx.cpu())
                            for l in loss_l]) * rescale_loss
            log_avg_loss += sum_loss
            mx.npx.waitall()
            if accum_count == args.num_accumulated or is_last_batch:
                # Update the parameters
                n_train_iters += 1
                n_epoch_train_iters += 1
                trainer.step(loss_denom.asnumpy() / rescale_loss)
                accum_count = 0
                loss_denom = 0
                model.zero_grad()
                if (args.epochs > 0 and epoch_id >= args.epochs - args.num_averages) or \
                   (args.max_update > 0 and n_train_iters >= args.max_update - args.num_averages * args.save_interval_update):
                    model_averager.step()
                if local_rank == 0 and \
                   (n_epoch_train_iters % args.log_interval == 0 or is_last_batch):
                    log_end_time = time.time()
                    log_wc = log_wc.asnumpy()
                    wps = log_wc / (log_end_time - log_start_time)
                    log_avg_loss = (log_avg_loss / log_loss_denom).asnumpy()
                    logging.info(
                        '[Epoch {} Batch {}/{}] loss={:.4f}, ppl={:.4f}, '
                        'throughput={:.2f}K wps, wc={:.2f}K, LR={}'.format(
                            epoch_id, processed_batch_num * num_parts,
                            len(train_data_loader), log_avg_loss,
                            np.exp(log_avg_loss), wps / 1000, log_wc / 1000,
                            trainer.learning_rate))
                    log_start_time = time.time()
                    log_avg_loss = 0
                    log_loss_denom = 0
                    log_wc = 0
                if local_rank == 0 and \
                   (args.max_update > 0 and n_train_iters % args.save_interval_update == 0):
                    model.save_parameters(os.path.join(
                        args.save_dir, 'update{:d}.params'.format(
                            n_train_iters // args.save_interval_update)),
                                          deduplicate=True)
                if args.max_update > 0 and n_train_iters >= args.max_update:
                    break
        if local_rank == 0 and args.epochs > 0:
            model.save_parameters(os.path.join(
                args.save_dir, 'epoch{:d}.params'.format(epoch_id)),
                                  deduplicate=True)
        avg_valid_loss = validation(model, val_data_loader, ctx_l)
        logging.info('[Epoch {}] validation loss/ppl={:.4f}/{:.4f}'.format(
            epoch_id, avg_valid_loss, np.exp(avg_valid_loss)))

        if args.max_update > 0 and n_train_iters >= args.max_update:
            break
        epoch_id += 1

    if args.num_averages > 0:
        model_averager.copy_back(
            model.collect_params())  # TODO(sxjscience) Rewrite using update
        model.save_parameters(os.path.join(args.save_dir, 'average.params'),
                              deduplicate=True)
def train(net, train_data, val_data, eval_metric, ctx, args):

    import gluoncv as gcv

    gcv.utils.check_version("0.6.0")
    from gluoncv import data as gdata
    from gluoncv import utils as gutils
    from gluoncv.data.batchify import Pad, Stack, Tuple
    from gluoncv.data.dataloader import RandomTransformDataLoader
    from gluoncv.data.transforms.presets.yolo import (
        YOLO3DefaultTrainTransform,
        YOLO3DefaultValTransform,
    )
    from gluoncv.model_zoo import get_model
    from gluoncv.utils import LRScheduler, LRSequential
    from gluoncv.utils.metrics.coco_detection import COCODetectionMetric
    from gluoncv.utils.metrics.voc_detection import VOC07MApMetric

    """Training pipeline"""
    net.collect_params().reset_ctx(ctx)
    if args.no_wd:
        for k, v in net.collect_params(".*beta|.*gamma|.*bias").items():
            v.wd_mult = 0.0

    if args.label_smooth:
        net._target_generator._label_smooth = True

    if args.lr_decay_period > 0:
        lr_decay_epoch = list(range(args.lr_decay_period, args.epochs, args.lr_decay_period))
    else:
        lr_decay_epoch = [int(i) for i in args.lr_decay_epoch.split(",")]
    lr_decay_epoch = [e - args.warmup_epochs for e in lr_decay_epoch]
    num_batches = args.num_samples // args.batch_size
    lr_scheduler = LRSequential(
        [
            LRScheduler(
                "linear",
                base_lr=0,
                target_lr=args.lr,
                nepochs=args.warmup_epochs,
                iters_per_epoch=num_batches,
            ),
            LRScheduler(
                args.lr_mode,
                base_lr=args.lr,
                nepochs=args.epochs - args.warmup_epochs,
                iters_per_epoch=num_batches,
                step_epoch=lr_decay_epoch,
                step_factor=args.lr_decay,
                power=2,
            ),
        ]
    )

    if args.horovod:
        hvd.broadcast_parameters(net.collect_params(), root_rank=0)
        trainer = hvd.DistributedTrainer(
            net.collect_params(),
            "sgd",
            {"wd": args.wd, "momentum": args.momentum, "lr_scheduler": lr_scheduler},
        )
    else:
        trainer = gluon.Trainer(
            net.collect_params(),
            "sgd",
            {"wd": args.wd, "momentum": args.momentum, "lr_scheduler": lr_scheduler},
            kvstore="local",
            update_on_kvstore=(False if args.amp else None),
        )

    if args.amp:
        amp.init_trainer(trainer)

    # targets
    sigmoid_ce = gluon.loss.SigmoidBinaryCrossEntropyLoss(from_sigmoid=False)
    l1_loss = gluon.loss.L1Loss()

    # metrics
    obj_metrics = mx.metric.Loss("ObjLoss")
    center_metrics = mx.metric.Loss("BoxCenterLoss")
    scale_metrics = mx.metric.Loss("BoxScaleLoss")
    cls_metrics = mx.metric.Loss("ClassLoss")

    # set up logger
    logging.basicConfig()
    logger = logging.getLogger()
    logger.setLevel(logging.INFO)
    log_file_path = args.save_prefix + "_train.log"
    log_dir = os.path.dirname(log_file_path)
    if log_dir and not os.path.exists(log_dir):
        os.makedirs(log_dir)
    fh = logging.FileHandler(log_file_path)
    logger.addHandler(fh)
    logger.info(args)
    logger.info("Start training from [Epoch {}]".format(args.start_epoch))
    best_map = [0]
    for epoch in range(args.start_epoch, args.num_epochs):
        if args.mixup:
            # TODO(zhreshold): more elegant way to control mixup during runtime
            try:
                train_data._dataset.set_mixup(np.random.beta, 1.5, 1.5)
            except AttributeError:
                train_data._dataset._data.set_mixup(np.random.beta, 1.5, 1.5)
            if epoch >= args.num_epochs - args.no_mixup_epochs:
                try:
                    train_data._dataset.set_mixup(None)
                except AttributeError:
                    train_data._dataset._data.set_mixup(None)

        tic = time.time()
        btic = time.time()
        mx.nd.waitall()
        net.hybridize()
        for i, batch in enumerate(train_data):
            data = gluon.utils.split_and_load(batch[0], ctx_list=ctx, batch_axis=0)
            # objectness, center_targets, scale_targets, weights, class_targets
            fixed_targets = [
                gluon.utils.split_and_load(batch[it], ctx_list=ctx, batch_axis=0)
                for it in range(1, 6)
            ]
            gt_boxes = gluon.utils.split_and_load(batch[6], ctx_list=ctx, batch_axis=0)
            sum_losses = []
            obj_losses = []
            center_losses = []
            scale_losses = []
            cls_losses = []
            with autograd.record():
                for ix, x in enumerate(data):
                    obj_loss, center_loss, scale_loss, cls_loss = net(
                        x, gt_boxes[ix], *[ft[ix] for ft in fixed_targets]
                    )
                    sum_losses.append(obj_loss + center_loss + scale_loss + cls_loss)
                    obj_losses.append(obj_loss)
                    center_losses.append(center_loss)
                    scale_losses.append(scale_loss)
                    cls_losses.append(cls_loss)
                if args.amp:
                    with amp.scale_loss(sum_losses, trainer) as scaled_loss:
                        autograd.backward(scaled_loss)
                else:
                    autograd.backward(sum_losses)
            trainer.step(batch_size)
            if not args.horovod or hvd.rank() == 0:
                obj_metrics.update(0, obj_losses)
                center_metrics.update(0, center_losses)
                scale_metrics.update(0, scale_losses)
                cls_metrics.update(0, cls_losses)
                if args.log_interval and not (i + 1) % args.log_interval:
                    name1, loss1 = obj_metrics.get()
                    name2, loss2 = center_metrics.get()
                    name3, loss3 = scale_metrics.get()
                    name4, loss4 = cls_metrics.get()
                    logger.info(
                        "[Epoch {}][Batch {}], LR: {:.2E}, Speed: {:.3f} samples/sec, {}={:.3f}, {}={:.3f}, {}={:.3f}, {}={:.3f}".format(
                            epoch,
                            i,
                            trainer.learning_rate,
                            args.batch_size / (time.time() - btic),
                            name1,
                            loss1,
                            name2,
                            loss2,
                            name3,
                            loss3,
                            name4,
                            loss4,
                        )
                    )
                btic = time.time()

        if not args.horovod or hvd.rank() == 0:
            name1, loss1 = obj_metrics.get()
            name2, loss2 = center_metrics.get()
            name3, loss3 = scale_metrics.get()
            name4, loss4 = cls_metrics.get()
            logger.info(
                "[Epoch {}] Training cost: {:.3f}, {}={:.3f}, {}={:.3f}, {}={:.3f}, {}={:.3f}".format(
                    epoch,
                    (time.time() - tic),
                    name1,
                    loss1,
                    name2,
                    loss2,
                    name3,
                    loss3,
                    name4,
                    loss4,
                )
            )
            if not (epoch + 1) % args.val_interval:
                # consider reduce the frequency of validation to save time
                map_name, mean_ap = validate(net, val_data, ctx, eval_metric)
                val_msg = "\n".join(["{}={}".format(k, v) for k, v in zip(map_name, mean_ap)])
                logger.info("[Epoch {}] Validation: \n{}".format(epoch, val_msg))
                current_map = float(mean_ap[-1])
            else:
                current_map = 0.0
            save_params(net, best_map, current_map, epoch, args.save_interval, args.save_prefix)

    # save model
    net.set_nms(nms_thresh=0.45, nms_topk=400, post_nms=100)
    net(mx.nd.ones((1, 3, args.data_shape, args.data_shape), ctx=ctx[0]))
    net.export("%s/model" % os.environ["SM_MODEL_DIR"])
示例#22
0
def train():
    # Get model from GluonCV model zoo
    # https://gluon-cv.mxnet.io/model_zoo/index.html
    net = get_model(args.model, **kwargs)
    net.cast(args.dtype)

    # Create input symbol
    data = mx.sym.var('data')
    if args.dtype == 'float16':
        data = mx.sym.Cast(data=data, dtype=np.float16)
        net.cast(np.float16)

    # Create output symbol
    out = net(data)
    if args.dtype == 'float16':
        out = mx.sym.Cast(data=out, dtype=np.float32)
    softmax = mx.sym.SoftmaxOutput(out, name='softmax')

    if args.use_pretrained:
        arg_params = {}
        for x in net.collect_params().values():
            x.reset_ctx(mx.cpu())
            arg_params[x.name] = x.data()
    else:
        arg_params = None
    aux_params = None

    # Create model
    mod = mx.mod.Module(softmax, context=context)

    # Create optimizer
    optimizer_params = {
        'wd': args.wd,
        'momentum': args.momentum,
        'rescale_grad': 1.0 / batch_size,
        'lr_scheduler': lr_sched
    }
    if args.dtype == 'float16':
        optimizer_params['multi_precision'] = True
    opt = mx.optimizer.create('sgd', sym=out, **optimizer_params)

    # Horovod: wrap optimizer with DistributedOptimizer
    opt = hvd.DistributedOptimizer(opt)

    # Create initializer and initializer parameters
    initializer = mx.init.Xavier(rnd_type='gaussian',
                                 factor_type="in",
                                 magnitude=2)
    mod.bind(data_shapes=train_data.provide_data,
             label_shapes=train_data.provide_label)
    mod.init_params(initializer, arg_params=arg_params, aux_params=aux_params)

    # Horovod: fetch and broadcast parameters
    (arg_params, aux_params) = mod.get_params()
    if arg_params is not None:
        hvd.broadcast_parameters(arg_params, root_rank=0)
    if aux_params is not None:
        hvd.broadcast_parameters(aux_params, root_rank=0)
    mod.set_params(arg_params=arg_params, aux_params=aux_params)

    # Setup validation data and callback during training
    eval_data = None
    if args.eval_epoch:
        eval_data = val_data
    batch_callback = None
    if args.log_interval > 0:
        batch_callback = mx.callback.Speedometer(batch_size,
                                                 max(1, args.log_interval))
    epoch_callback = None
    if args.save_frequency > 0:
        epoch_callback = mx.callback.do_checkpoint('%s-%d' %
                                                   (args.model, rank),
                                                   period=args.save_frequency)

    # Train model
    mod.fit(train_data,
            eval_data=eval_data,
            num_epoch=args.num_epochs,
            kvstore=None,
            batch_end_callback=batch_callback,
            epoch_end_callback=epoch_callback,
            optimizer=opt,
            optimizer_params=optimizer_params)

    # Evaluate performance if not using synthetic data
    if args.use_rec:
        acc_top1 = mx.metric.Accuracy()
        acc_top5 = mx.metric.TopKAccuracy(5)
        res = mod.score(val_data, [acc_top1, acc_top5])
        for name, val in res:
            logging.info('Epoch[%d] Rank[%d] Validation-%s=%f',
                         args.num_epochs - 1, rank, name, val)
    def train(epochs, ctx):
        if isinstance(ctx, mx.Context):
            ctx = [ctx]
        net.initialize(mx.init.Xavier(), ctx=ctx)

        # if opt.print_tensor_shape and rank == 0:
        #     print(net)

        train_dataset = gluon.data.vision.CIFAR100(train=True).transform_first(transform_train)

        train_data = gluon.data.DataLoader(
            train_dataset,
            sampler=SplitSampler(len(train_dataset), num_parts=num_workers, part_index=rank),
            batch_size=batch_size, last_batch='discard', num_workers=opt.num_workers)

        # val_dataset = gluon.data.vision.CIFAR100(train=False).transform_first(transform_test)
        # val_data = gluon.data.DataLoader(
        #     val_dataset,
        #     sampler=SplitSampler(len(val_dataset), num_parts=num_workers, part_index=rank),
        #     batch_size=batch_size, num_workers=opt.num_workers)

        val_data = gluon.data.DataLoader(
            gluon.data.vision.CIFAR100(train=False).transform_first(transform_test),
            batch_size=batch_size, shuffle=False, num_workers=opt.num_workers)

        hvd.broadcast_parameters(net.collect_params(), root_rank=0)

        trainer = QSparseLocalSGDTrainerV1(
            net.collect_params(),  
            'nag', optimizer_params, 
            input_sparse_ratio=1./opt.input_sparse, 
            output_sparse_ratio=1./opt.output_sparse, 
            layer_sparse_ratio=1./opt.layer_sparse,
            local_sgd_interval=opt.local_sgd_interval)

        # trainer = gluon.Trainer(net.collect_params(), optimizer,
                                # {'learning_rate': opt.lr, 'wd': opt.wd, 'momentum': opt.momentum})
        
        metric = mx.metric.Accuracy()
        train_metric = mx.metric.Accuracy()
        loss_fn = gluon.loss.SoftmaxCrossEntropyLoss()
        train_history = TrainingHistory(['training-error', 'validation-error'])

        iteration = 0
        lr_decay_count = 0

        best_val_score = 0

        lr = opt.lr

        for epoch in range(epochs):
            tic = time.time()
            train_metric.reset()
            metric.reset()
            train_loss = 0
            num_batch = len(train_data)
            alpha = 1

            if epoch == lr_decay_epoch[lr_decay_count]:
                lr *= lr_decay
                trainer.set_learning_rate(lr)
                lr_decay_count += 1

            for i, batch in enumerate(train_data):
                data = gluon.utils.split_and_load(batch[0], ctx_list=ctx, batch_axis=0)
                label = gluon.utils.split_and_load(batch[1], ctx_list=ctx, batch_axis=0)

                with ag.record():
                    output = [net(X) for X in data]
                    loss = [loss_fn(yhat, y) for yhat, y in zip(output, label)]

                for l in loss:
                    l.backward()
                trainer.step(batch_size)
                train_loss += sum([l.sum().asscalar() for l in loss])

                train_metric.update(label, output)
                name, acc = train_metric.get()
                iteration += 1

            mx.nd.waitall()
            toc = time.time()
            
            train_loss /= batch_size * num_batch
            name, acc = train_metric.get()
            # name, val_acc = test(ctx, val_data)

            trainer.pre_test()
            name, val_acc = test(ctx, val_data)
            trainer.post_test()
            
            train_history.update([1-acc, 1-val_acc])
            # train_history.plot(save_path='%s/%s_history.png'%(plot_path, model_name))

            # allreduce the results
            allreduce_array_nd = mx.nd.array([train_loss, acc, val_acc])
            hvd.allreduce_(allreduce_array_nd, name='allreduce_array', average=True)
            allreduce_array_np = allreduce_array_nd.asnumpy()
            train_loss = np.asscalar(allreduce_array_np[0])
            acc = np.asscalar(allreduce_array_np[1])
            val_acc = np.asscalar(allreduce_array_np[2])

            if val_acc > best_val_score:
                best_val_score = val_acc
                # net.save_parameters('%s/%.4f-cifar-%s-%d-best.params'%(save_dir, best_val_score, model_name, epoch))

            if rank == 0:
                logging.info('[Epoch %d] train=%f val=%f loss=%f comm=%.2f time: %f' %
                    (epoch, acc, val_acc, train_loss, trainer._comm_counter/1e6, toc-tic))

                if save_period and save_dir and (epoch + 1) % save_period == 0:
                    net.save_parameters('%s/cifar10-%s-%d.params'%(save_dir, model_name, epoch))

            trainer._comm_counter = 0.

        if rank == 0:
            if save_period and save_dir:
                net.save_parameters('%s/cifar10-%s-%d.params'%(save_dir, model_name, epochs-1))
示例#24
0
def train(net, train_data, val_data, eval_metric, batch_size, ctx, logger, args):
    """Training pipeline"""
    args.kv_store = 'device' if (args.amp and 'nccl' in args.kv_store) else args.kv_store
    kv = mx.kvstore.create(args.kv_store)
    net.collect_params().setattr('grad_req', 'null')
    net.collect_train_params().setattr('grad_req', 'write')
    for k, v in net.collect_params('.*bias').items():
        v.wd_mult = 0.0
    optimizer_params = {'learning_rate': args.lr, 'wd': args.wd, 'momentum': args.momentum, }
    if args.clip_gradient > 0.0:
        optimizer_params['clip_gradient'] = args.clip_gradient
    if args.amp:
        optimizer_params['multi_precision'] = True
    if args.horovod:
        hvd.broadcast_parameters(net.collect_params(), root_rank=0)
        trainer = hvd.DistributedTrainer(
            net.collect_train_params(),  # fix batchnorm, fix first stage, etc...
            'sgd',
            optimizer_params
        )
    else:
        trainer = gluon.Trainer(
            net.collect_train_params(),  # fix batchnorm, fix first stage, etc...
            'sgd',
            optimizer_params,
            update_on_kvstore=(False if args.amp else None),
            kvstore=kv)

    if args.amp:
        amp.init_trainer(trainer)

    # lr decay policy
    lr_decay = float(args.lr_decay)
    lr_steps = sorted([float(ls) for ls in args.lr_decay_epoch.split(',') if ls.strip()])
    lr_warmup = float(args.lr_warmup)  # avoid int division

    rpn_cls_loss = mx.gluon.loss.SigmoidBinaryCrossEntropyLoss(from_sigmoid=False)
    rpn_box_loss = mx.gluon.loss.HuberLoss(rho=args.rpn_smoothl1_rho)  # == smoothl1
    rcnn_cls_loss = mx.gluon.loss.SoftmaxCrossEntropyLoss()
    rcnn_box_loss = mx.gluon.loss.HuberLoss(rho=args.rcnn_smoothl1_rho)  # == smoothl1
    rcnn_mask_loss = mx.gluon.loss.SigmoidBinaryCrossEntropyLoss(from_sigmoid=False)
    metrics = [mx.metric.Loss('RPN_Conf'),
               mx.metric.Loss('RPN_SmoothL1'),
               mx.metric.Loss('RCNN_CrossEntropy'),
               mx.metric.Loss('RCNN_SmoothL1'),
               mx.metric.Loss('RCNN_Mask')]

    rpn_acc_metric = RPNAccMetric()
    rpn_bbox_metric = RPNL1LossMetric()
    rcnn_acc_metric = RCNNAccMetric()
    rcnn_bbox_metric = RCNNL1LossMetric()
    rcnn_mask_metric = MaskAccMetric()
    rcnn_fgmask_metric = MaskFGAccMetric()
    metrics2 = [rpn_acc_metric, rpn_bbox_metric,
                rcnn_acc_metric, rcnn_bbox_metric,
                rcnn_mask_metric, rcnn_fgmask_metric]
    async_eval_processes = []
    logger.info(args)

    if args.verbose:
        logger.info('Trainable parameters:')
        logger.info(net.collect_train_params().keys())
    logger.info('Start training from [Epoch {}]'.format(args.start_epoch))
    best_map = [0]
    base_lr = trainer.learning_rate
    for epoch in range(args.start_epoch, args.epochs):
        rcnn_task = ForwardBackwardTask(net, trainer, rpn_cls_loss, rpn_box_loss, rcnn_cls_loss,
                                        rcnn_box_loss, rcnn_mask_loss, args.amp)
        executor = Parallel(args.executor_threads, rcnn_task) if not args.horovod else None
        if not args.disable_hybridization:
            net.hybridize(static_alloc=args.static_alloc)
        while lr_steps and epoch >= lr_steps[0]:
            new_lr = trainer.learning_rate * lr_decay
            lr_steps.pop(0)
            trainer.set_learning_rate(new_lr)
            logger.info("[Epoch {}] Set learning rate to {}".format(epoch, new_lr))
        for metric in metrics:
            metric.reset()
        tic = time.time()
        btic = time.time()
        train_data_iter = iter(train_data)
        next_data_batch = next(train_data_iter)
        next_data_batch = split_and_load(next_data_batch, ctx_list=ctx)
        for i in range(len(train_data)):
            batch = next_data_batch
            if i + epoch * len(train_data) <= lr_warmup:
                # adjust based on real percentage
                new_lr = base_lr * get_lr_at_iter((i + epoch * len(train_data)) / lr_warmup,
                                                  args.lr_warmup_factor)
                if new_lr != trainer.learning_rate:
                    if i % args.log_interval == 0:
                        logger.info('[Epoch {} Iteration {}] Set learning rate to {}'
                                    .format(epoch, i, new_lr))
                    trainer.set_learning_rate(new_lr)
            metric_losses = [[] for _ in metrics]
            add_losses = [[] for _ in metrics2]
            if executor is not None:
                for data in zip(*batch):
                    executor.put(data)
            for j in range(len(ctx)):
                if executor is not None:
                    result = executor.get()
                else:
                    result = rcnn_task.forward_backward(list(zip(*batch))[0])
                if (not args.horovod) or hvd.rank() == 0:
                    for k in range(len(metric_losses)):
                        metric_losses[k].append(result[k])
                    for k in range(len(add_losses)):
                        add_losses[k].append(result[len(metric_losses) + k])
            try:
                # prefetch next batch
                next_data_batch = next(train_data_iter)
                next_data_batch = split_and_load(next_data_batch, ctx_list=ctx)
            except StopIteration:
                pass

            for metric, record in zip(metrics, metric_losses):
                metric.update(0, record)
            for metric, records in zip(metrics2, add_losses):
                for pred in records:
                    metric.update(pred[0], pred[1])
            trainer.step(batch_size)
            if (not args.horovod or hvd.rank() == 0) and args.log_interval \
                    and not (i + 1) % args.log_interval:
                msg = ','.join(['{}={:.3f}'.format(*metric.get()) for metric in metrics + metrics2])
                batch_speed = args.log_interval * args.batch_size / (time.time() - btic)
                speed.append(batch_speed)
                logger.info('[Epoch {}][Batch {}], Speed: {:.3f} samples/sec, {}'.format(
                    epoch, i, batch_speed, msg))
                btic = time.time()
        if speed:
            avg_batch_speed = sum(speed) / len(speed)
        # validate and save params
        if (not args.horovod) or hvd.rank() == 0:
            msg = ','.join(['{}={:.3f}'.format(*metric.get()) for metric in metrics])
            logger.info('[Epoch {}] Training cost: {:.3f}, Speed: {:.3f} samples/sec, {}'.format(
                epoch, (time.time() - tic), avg_batch_speed, msg))
        if not (epoch + 1) % args.val_interval:
            # consider reduce the frequency of validation to save time
            validate(net, val_data, async_eval_processes, ctx, eval_metric, logger, epoch, best_map,
                     args)
        elif (not args.horovod) or hvd.rank() == 0:
            current_map = 0.
            save_params(net, logger, best_map, current_map, epoch, args.save_interval,
                        args.save_prefix)
    for thread in async_eval_processes:
        thread.join()
def train(data_train, data_eval, model):
    """Training function."""
    # backend specific implementation
    param_dict = model.bert.collect_params()
    if backend == 'horovod':
        hvd.broadcast_parameters(param_dict, root_rank=0)

    mlm_metric = nlp.metric.MaskedAccuracy()
    nsp_metric = nlp.metric.MaskedAccuracy()
    mlm_metric.reset()
    nsp_metric.reset()

    logging.info('Creating distributed trainer...')
    lr = args.lr
    optim_params = {'learning_rate': lr, 'epsilon': 1e-6, 'wd': 0.01}
    if args.dtype == 'float16':
        optim_params['multi_precision'] = True

    dynamic_loss_scale = args.dtype == 'float16'
    if dynamic_loss_scale:
        loss_scale_param = {
            'scale_window': 2000 / num_workers,
            'init_scale': 2**10
        }
    else:
        loss_scale_param = None

    # backend specific implementation
    if backend == 'horovod':
        trainer = hvd.DistributedTrainer(param_dict, args.optimizer,
                                         optim_params)
    else:
        trainer = mx.gluon.Trainer(param_dict,
                                   args.optimizer,
                                   optim_params,
                                   update_on_kvstore=False)
    fp16_trainer = FP16Trainer(trainer,
                               dynamic_loss_scale=dynamic_loss_scale,
                               loss_scaler_params=loss_scale_param)

    if args.start_step:
        state_path = os.path.join(
            args.ckpt_dir, '%07d.states.%02d' % (args.start_step, local_rank))
        logging.info('Loading trainer state from %s', state_path)
        nlp.utils.load_states(trainer, state_path)

    accumulate = args.accumulate
    num_train_steps = args.num_steps
    warmup_ratio = args.warmup_ratio
    num_warmup_steps = int(num_train_steps * warmup_ratio)
    params = [p for p in param_dict.values() if p.grad_req != 'null']

    # Do not apply weight decay on LayerNorm and bias terms
    for _, v in model.collect_params('.*beta|.*gamma|.*bias').items():
        v.wd_mult = 0.0
    if accumulate > 1:
        for p in params:
            p.grad_req = 'add'

    train_begin_time = time.time()
    begin_time = time.time()
    running_mlm_loss, running_nsp_loss = 0, 0
    running_num_tks = 0
    batch_num = 0
    step_num = args.start_step

    if args.phase2:
        step_num -= args.phase1_num_steps

    logging.info('Training started')

    # create dummy data loader if needed
    parallel_model = DataParallelBERT(model, trainer=fp16_trainer)
    num_ctxes = len(ctxs)
    parallel = nlp.utils.Parallel(num_ctxes if num_ctxes > 1 else 0,
                                  parallel_model)

    while step_num < num_train_steps:

        data_train_iter = iter(data_train)
        end_of_batch = False
        next_data_batch = next(data_train_iter)
        while not end_of_batch:
            data_batch = next_data_batch
            if step_num >= num_train_steps:
                break
            if batch_num % accumulate == 0:
                step_num += 1
                # update learning rate
                if step_num <= num_warmup_steps:
                    new_lr = lr * step_num / num_warmup_steps
                else:
                    offset = (num_train_steps - step_num) / (num_train_steps -
                                                             num_warmup_steps)
                    new_lr = lr * max(offset, 0)
                trainer.set_learning_rate(new_lr)
                if args.profile:
                    profile(step_num,
                            10,
                            14,
                            profile_name=args.profile + str(rank))

            # load data
            data_list = list(split_and_load(data_batch, ctxs))

            ns_label_list, ns_pred_list = [], []
            mask_label_list, mask_pred_list, mask_weight_list = [], [], []

            num_data = len(data_list)
            for i in range(num_data):
                parallel.put(data_list[i])
            for _ in range(num_data):
                (next_sentence_label, classified, masked_id, decoded,
                 masked_weight, ls1, ls2, valid_length) = parallel.get()
                ns_label_list.append(next_sentence_label)
                ns_pred_list.append(classified)
                mask_label_list.append(masked_id)
                mask_pred_list.append(decoded)
                mask_weight_list.append(masked_weight)
                running_mlm_loss += ls1.as_in_context(mx.cpu()) / len(ctxs)
                running_nsp_loss += ls2.as_in_context(mx.cpu()) / len(ctxs)
                running_num_tks += valid_length.sum().as_in_context(mx.cpu())
            # pre fetch next batch
            try:
                next_data_batch = next(data_train_iter)
            except StopIteration:
                end_of_batch = True

            # update
            if (batch_num + 1) % accumulate == 0:
                fp16_trainer.step(1, max_norm=1.0 * num_workers)
                if accumulate > 1:
                    param_dict.zero_grad()
            # update metrics
            if args.no_compute_acc:
                mask_pred_list[0].wait_to_read()
            else:
                nsp_metric.update(ns_label_list, ns_pred_list)
                mlm_metric.update(mask_label_list, mask_pred_list,
                                  mask_weight_list)

            # logging
            if step_num % (args.log_interval) == 0 and (batch_num +
                                                        1) % accumulate == 0:
                if args.no_compute_acc:
                    log_noacc(begin_time, running_num_tks,
                              running_mlm_loss / accumulate,
                              running_nsp_loss / accumulate, step_num, trainer,
                              args.log_interval)
                else:
                    log(begin_time, running_num_tks,
                        running_mlm_loss / accumulate,
                        running_nsp_loss / accumulate, step_num, mlm_metric,
                        nsp_metric, trainer, args.log_interval)
                    mlm_metric.reset_local()
                    nsp_metric.reset_local()
                begin_time = time.time()
                running_mlm_loss = running_nsp_loss = running_num_tks = 0

            # saving checkpoints
            if step_num % args.ckpt_interval == 0 and (batch_num +
                                                       1) % accumulate == 0:
                if is_master_node:
                    save_states(step_num, trainer, args.ckpt_dir, local_rank)
                    if local_rank == 0:
                        save_parameters(step_num, model.bert, args.ckpt_dir)
            if step_num % args.eval_interval == 0 and data_eval \
                    and (batch_num + 1) % accumulate == 0:
                # eval data is always based on a fixed npz file.
                dataset_eval = get_pretrain_data_npz(data_eval,
                                                     batch_size_eval, 1, False,
                                                     1, vocab)
                evaluate(dataset_eval, model, ctxs, args.log_interval,
                         args.dtype)

            batch_num += 1

    if is_master_node:
        save_states(step_num, trainer, args.ckpt_dir, local_rank)
        if local_rank == 0:
            save_parameters(step_num, model.bert, args.ckpt_dir)
    mx.nd.waitall()
    train_end_time = time.time()
    logging.info('Train cost={:.1f}s'.format(train_end_time -
                                             train_begin_time))
示例#26
0
def train_module():
    # Create input symbol
    data = mx.sym.var('data')
    if args.dtype == 'float16':
        data = mx.sym.Cast(data=data, dtype=np.float16)
        net.cast(np.float16)

    # Create output symbol
    out = net(data)
    if args.dtype == 'float16':
        out = mx.sym.Cast(data=out, dtype=np.float32)
    softmax = mx.sym.SoftmaxOutput(out, name='softmax')

    # Create model
    mod = mx.mod.Module(softmax, context=context)

    # Initialize parameters
    if args.use_pretrained:
        arg_params = {}
        for x in net.collect_params().values():
            x.reset_ctx(mx.cpu())
            arg_params[x.name] = x.data()
    else:
        arg_params = None
    aux_params = None
    mod.bind(data_shapes=train_data.provide_data,
             label_shapes=train_data.provide_label)
    mod.init_params(initializer, arg_params=arg_params, aux_params=aux_params)

    # Horovod: fetch and broadcast parameters
    (arg_params, aux_params) = mod.get_params()
    if arg_params is not None:
        hvd.broadcast_parameters(arg_params, root_rank=0)
    if aux_params is not None:
        hvd.broadcast_parameters(aux_params, root_rank=0)
    mod.set_params(arg_params=arg_params, aux_params=aux_params)

    # Create optimizer
    # Note that when using Module API, we need to specify rescale_grad since
    # we create optimizer first and wrap it with DistributedOptimizer. For
    # Gluon API, it is handled in Trainer.step() function so there is no need
    # to specify rescale_grad (see above train_gluon() function).
    optimizer_params = {
        'wd': args.wd,
        'momentum': args.momentum,
        'rescale_grad': 1.0 / batch_size,
        'lr_scheduler': lr_sched
    }
    if args.dtype == 'float16':
        optimizer_params['multi_precision'] = True
    opt = mx.optimizer.create('sgd', **optimizer_params)

    # Horovod: wrap optimizer with DistributedOptimizer
    dist_opt = hvd.DistributedOptimizer(
        opt, gradient_predivide_factor=args.gradient_predivide_factor)

    # Setup validation data and callback during training
    eval_data = None
    if args.eval_epoch:
        eval_data = val_data
    batch_callback = None
    if args.log_interval > 0 and rank == 0:
        batch_callback = mx.callback.Speedometer(batch_size * num_workers,
                                                 args.log_interval)

    epoch_callback = None
    if args.save_frequency > 0:
        epoch_callback = mx.callback.do_checkpoint('%s-%d' %
                                                   (args.model, rank),
                                                   period=args.save_frequency)

    # Train model
    mod.fit(train_data,
            eval_data=eval_data,
            num_epoch=args.num_epochs,
            kvstore=None,
            batch_end_callback=batch_callback,
            epoch_end_callback=epoch_callback,
            optimizer=dist_opt)

    # Evaluate performance if not using synthetic data
    if args.use_rec:
        acc_top1 = mx.metric.Accuracy()
        acc_top5 = mx.metric.TopKAccuracy(5)
        res = mod.score(val_data, [acc_top1, acc_top5])
        for name, val in res:
            logging.info('Epoch[%d] Rank[%d] Validation-%s=%f',
                         args.num_epochs - 1, rank, name, val)
示例#27
0
def train(args):
    store, num_workers, rank, local_rank, is_master_node, ctx_l = init_comm(
        args.comm_backend, args.gpus)
    setup_logging(args, local_rank)
    cfg, tokenizer, qa_net, use_segmentation = \
        get_network(args.model_name, ctx_l,
                    args.classifier_dropout,
                    args.param_checkpoint,
                    args.backbone_path)

    logging.info('Prepare training data')
    train_features = get_squad_features(args, tokenizer, segment='train')
    dataset_processor = SquadDatasetProcessor(
        tokenizer=tokenizer,
        doc_stride=args.doc_stride,
        max_seq_length=args.max_seq_length,
        max_query_length=args.max_query_length)
    logging.info('Processing the Training data:')
    train_dataset, num_answer_mismatch, num_unreliable \
        = dataset_processor.get_train(train_features, skip_unreliable=True)
    logging.info(
        'Done! #Unreliable Span={} / #Mismatched Answer={} / #Total={}'.format(
            num_unreliable, num_answer_mismatch, len(train_features)))

    # Get dataset statistics
    num_impossible = 0
    for sample in train_dataset:
        num_impossible += sample.is_impossible
    logging.info('Before Chunking, #Train/Is Impossible = {}/{}'.format(
        len(train_features),
        sum([ele.is_impossible for ele in train_features])))
    logging.info('After Chunking, #Train Sample/Is Impossible = {}/{}'.format(
        len(train_dataset), num_impossible))

    # Shuffle the dataset using a fixed seed across all workers
    rs = np.random.RandomState(args.pre_shuffle_seed)
    rs.shuffle(train_dataset)
    sampler = SplitSampler(len(train_dataset),
                           num_parts=num_workers,
                           part_index=rank,
                           even_size=True)
    train_dataloader = mx.gluon.data.DataLoader(
        train_dataset,
        batchify_fn=dataset_processor.BatchifyFunction,
        batch_size=args.batch_size,
        num_workers=0,
        sampler=sampler)
    if 'electra' in args.model_name:
        # Froze parameters, does not work for albert model since parameters in all layers are shared
        if args.untunable_depth > 0:
            qa_net.backbone.frozen_params(args.untunable_depth)
        if args.layerwise_decay > 0:
            qa_net.backbone.apply_layerwise_decay(args.layerwise_decay)

    logging.info('Creating distributed trainer...')
    # Collect differentiable parameters
    param_dict = qa_net.collect_params()
    # Do not apply weight decay to all the LayerNorm and bias
    for _, v in qa_net.collect_params('.*beta|.*gamma|.*bias').items():
        v.wd_mult = 0.0
    params = [p for p in param_dict.values() if p.grad_req != 'null']
    # Set grad_req if gradient accumulation is required
    num_accumulated = args.num_accumulated
    if num_accumulated > 1:
        logging.info(
            'Using gradient accumulation. Effective global batch size = {}'.
            format(num_accumulated * args.batch_size * len(ctx_l) *
                   num_workers))
        for p in params:
            p.grad_req = 'add'
    # backend specific implementation
    if args.comm_backend == 'horovod':
        # Horovod: fetch and broadcast parameters
        hvd.broadcast_parameters(param_dict, root_rank=0)

    epoch_size = (len(train_dataloader) + len(ctx_l) - 1) // len(ctx_l)
    if args.num_train_steps is not None:
        num_train_steps = args.num_train_steps
    else:
        num_train_steps = int(args.epochs * epoch_size / args.num_accumulated)
    if args.warmup_steps is not None:
        warmup_steps = args.warmup_steps
    else:
        warmup_steps = int(num_train_steps * args.warmup_ratio)
    assert warmup_steps is not None, 'Must specify either warmup_steps or warmup_ratio'
    log_interval = args.log_interval
    save_interval = args.save_interval if args.save_interval is not None\
        else epoch_size // args.num_accumulated
    logging.info(
        '#Total Training Steps={}, Warmup={}, Save Interval={}'.format(
            num_train_steps, warmup_steps, save_interval))

    # set up optimization
    lr_scheduler = PolyScheduler(max_update=num_train_steps,
                                 base_lr=args.lr,
                                 warmup_begin_lr=0,
                                 pwr=1,
                                 final_lr=0,
                                 warmup_steps=warmup_steps,
                                 warmup_mode='linear')
    optimizer_params = {
        'learning_rate': args.lr,
        'wd': args.wd,
        'lr_scheduler': lr_scheduler,
    }
    adam_betas = eval(args.adam_betas)
    if args.optimizer == 'adamw':
        optimizer_params.update({
            'beta1': adam_betas[0],
            'beta2': adam_betas[1],
            'epsilon': args.adam_epsilon,
            'correct_bias': False,
        })
    elif args.optimizer == 'adam':
        optimizer_params.update({
            'beta1': adam_betas[0],
            'beta2': adam_betas[1],
            'epsilon': args.adam_epsilon,
        })
    if args.comm_backend == 'horovod':
        trainer = hvd.DistributedTrainer(param_dict, args.optimizer,
                                         optimizer_params)
    else:
        trainer = mx.gluon.Trainer(param_dict,
                                   args.optimizer,
                                   optimizer_params,
                                   update_on_kvstore=False)

    log_span_loss = 0
    log_answerable_loss = 0
    log_total_loss = 0
    log_sample_num = 0

    global_tic = time.time()
    tic = time.time()
    for step_num, batch_data in enumerate(
            grouper(repeat(train_dataloader),
                    len(ctx_l) * num_accumulated)):
        for sample_l in grouper(batch_data, len(ctx_l)):
            loss_l = []
            span_loss_l = []
            answerable_loss_l = []
            for sample, ctx in zip(sample_l, ctx_l):
                if sample is None:
                    continue
                # Copy the data to device
                tokens = sample.data.as_in_ctx(ctx)
                log_sample_num += len(tokens)
                segment_ids = sample.segment_ids.as_in_ctx(
                    ctx) if use_segmentation else None
                valid_length = sample.valid_length.as_in_ctx(ctx)
                p_mask = sample.masks.as_in_ctx(ctx)
                gt_start = sample.gt_start.as_in_ctx(ctx).astype(np.int32)
                gt_end = sample.gt_end.as_in_ctx(ctx).astype(np.int32)
                is_impossible = sample.is_impossible.as_in_ctx(ctx).astype(
                    np.int32)
                batch_idx = mx.np.arange(tokens.shape[0],
                                         dtype=np.int32,
                                         ctx=ctx)
                p_mask = 1 - p_mask  # In the network, we use 1 --> no_mask, 0 --> mask
                with mx.autograd.record():
                    start_logits, end_logits, answerable_logits \
                        = qa_net(tokens, segment_ids, valid_length, p_mask, gt_start)
                    sel_start_logits = start_logits[batch_idx, gt_start]
                    sel_end_logits = end_logits[batch_idx, gt_end]
                    sel_answerable_logits = answerable_logits[batch_idx,
                                                              is_impossible]
                    span_loss = -0.5 * (sel_start_logits +
                                        sel_end_logits).mean()
                    answerable_loss = -0.5 * sel_answerable_logits.mean()
                    loss = span_loss + answerable_loss
                    loss_l.append(loss)
                    span_loss_l.append(span_loss)
                    answerable_loss_l.append(answerable_loss)

            for loss in loss_l:
                loss.backward()
            # All Reduce the Step Loss
            log_span_loss += sum(
                [ele.as_in_ctx(ctx_l[0]) for ele in span_loss_l]).asnumpy()
            log_total_loss += sum([ele.as_in_ctx(ctx_l[0])
                                   for ele in loss_l]).asnumpy()
            log_answerable_loss += sum([
                ele.as_in_ctx(ctx_l[0]) for ele in answerable_loss_l
            ]).asnumpy()
        # update
        trainer.allreduce_grads()

        if args.max_grad_norm > 0:
            total_norm, ratio, is_finite = clip_grad_global_norm(
                params, args.max_grad_norm * num_workers)
        else:
            total_norm = grad_global_norm(params)

        if args.comm_backend == 'horovod':
            # Note that horovod.trainer._scale is default to num_workers,
            # thus trainer.update(1) will scale the gradients by 1./num_workers
            trainer.update(1, ignore_stale_grad=True)
        else:
            # gluon.trainer._scale is default to 1
            trainer.update(num_workers, ignore_stale_grad=True)

        total_norm = total_norm / num_workers
        if args.num_accumulated > 1:
            # set grad to zero for gradient accumulation
            qa_net.zero_grad()

        # saving
        if local_rank == 0 and (step_num + 1) % save_interval == 0 or (
                step_num + 1) >= num_train_steps:
            version_prefix = 'squad' + args.version
            ckpt_name = '{}_{}_{}.params'.format(args.model_name,
                                                 version_prefix,
                                                 (step_num + 1))
            params_saved = os.path.join(args.output_dir, ckpt_name)
            qa_net.save_parameters(params_saved)
            ckpt_candidates = [
                f for f in os.listdir(args.output_dir) if f.endswith('.params')
            ]
            # keep last `max_saved_ckpt` checkpoints
            if len(ckpt_candidates) > args.max_saved_ckpt:
                ckpt_candidates.sort(key=lambda ele: (len(ele), ele))
                os.remove(os.path.join(args.output_dir, ckpt_candidates[0]))
            logging.info('Params saved in: {}'.format(params_saved))

        # logging
        if (step_num + 1) % log_interval == 0:
            log_span_loss /= log_sample_num
            log_answerable_loss /= log_sample_num
            log_total_loss /= log_sample_num
            toc = time.time()
            logging.info(
                'Step: {}/{}, Loss span/answer/total={:.4f}/{:.4f}/{:.4f},'
                ' LR={:.8f}, grad_norm={:.4f}. Time cost={:.2f}, Throughput={:.2f} samples/s'
                ' ETA={:.2f}h'.format(
                    (step_num + 1), num_train_steps, log_span_loss,
                    log_answerable_loss, log_total_loss, trainer.learning_rate,
                    total_norm, toc - tic, log_sample_num / (toc - tic),
                    (num_train_steps - (step_num + 1)) /
                    ((step_num + 1) / (toc - global_tic)) / 3600))
            tic = time.time()
            log_span_loss = 0
            log_answerable_loss = 0
            log_total_loss = 0
            log_sample_num = 0
            num_samples_per_update = 0

        if (step_num + 1) >= num_train_steps:
            toc = time.time()
            logging.info('Finish training step: {} within {} hours'.format(
                step_num + 1, (toc - global_tic) / 3600))
            break

    return params_saved
示例#28
0
def train(data_train, data_eval, model, nsp_loss, mlm_loss, vocab_size, ctx):
    """Training function."""
    hvd.broadcast_parameters(model.collect_params(), root_rank=0)

    mlm_metric = nlp.metric.MaskedAccuracy()
    nsp_metric = nlp.metric.MaskedAccuracy()
    mlm_metric.reset()
    nsp_metric.reset()

    logging.debug('Creating distributed trainer...')
    lr = args.lr
    optim_params = {'learning_rate': lr, 'epsilon': 1e-6, 'wd': 0.01}
    if args.dtype == 'float16':
        optim_params['multi_precision'] = True

    dynamic_loss_scale = args.dtype == 'float16'
    if dynamic_loss_scale:
        loss_scale_param = {'scale_window': 2000 / num_workers}
    else:
        loss_scale_param = None
    trainer = hvd.DistributedTrainer(model.collect_params(), 'bertadam', optim_params)
    fp16_trainer = FP16Trainer(trainer, dynamic_loss_scale=dynamic_loss_scale,
                               loss_scaler_params=loss_scale_param)

    if args.start_step:
        state_path = os.path.join(args.ckpt_dir, '%07d.states.%02d'%(args.start_step, local_rank))
        logging.info('Loading trainer state from %s', state_path)
        nlp.utils.load_states(trainer, state_path)

    accumulate = args.accumulate
    num_train_steps = args.num_steps
    warmup_ratio = args.warmup_ratio
    num_warmup_steps = int(num_train_steps * warmup_ratio)
    params = [p for p in model.collect_params().values() if p.grad_req != 'null']
    param_dict = model.collect_params()

    # Do not apply weight decay on LayerNorm and bias terms
    for _, v in model.collect_params('.*beta|.*gamma|.*bias').items():
        v.wd_mult = 0.0
    if accumulate > 1:
        for p in params:
            p.grad_req = 'add'

    train_begin_time = time.time()
    begin_time = time.time()
    running_mlm_loss, running_nsp_loss = 0, 0
    running_num_tks = 0
    batch_num = 0
    step_num = args.start_step

    logging.debug('Training started')
    while step_num < num_train_steps:
        for _, dataloader in enumerate(data_train):
            if step_num >= num_train_steps:
                break

            # create dummy data loader if needed
            if args.dummy_data_len:
                target_shape = (args.batch_size, args.dummy_data_len)
                dataloader = get_dummy_dataloader(dataloader, target_shape)

            for _, data_batch in enumerate(dataloader):
                if step_num >= num_train_steps:
                    break
                if batch_num % accumulate == 0:
                    step_num += 1
                    # if accumulate > 1, grad_req is set to 'add', and zero_grad is required
                    if accumulate > 1:
                        param_dict.zero_grad()
                    # update learning rate
                    if step_num <= num_warmup_steps:
                        new_lr = lr * step_num / num_warmup_steps
                    else:
                        offset = lr * step_num / num_train_steps
                        new_lr = lr - offset
                    trainer.set_learning_rate(new_lr)
                    if args.profile:
                        profile(step_num, 10, 14, profile_name=args.profile + str(rank))

                # load data
                if args.use_avg_len:
                    data_list = [[seq.as_in_context(context) for seq in shard]
                                 for context, shard in zip([ctx], data_batch)]
                else:
                    data_list = list(split_and_load(data_batch, [ctx]))
                data = data_list[0]

                # forward
                with mx.autograd.record():
                    (ls, ns_label, classified, masked_id, decoded, \
                     masked_weight, ls1, ls2, valid_len) = forward(data, model, mlm_loss,
                                                                   nsp_loss, vocab_size, args.dtype)
                    ls = ls / accumulate
                    # backward
                    if args.dtype == 'float16':
                        fp16_trainer.backward(ls)
                    else:
                        ls.backward()

                running_mlm_loss += ls1.as_in_context(mx.cpu())
                running_nsp_loss += ls2.as_in_context(mx.cpu())
                running_num_tks += valid_len.sum().as_in_context(mx.cpu())

                # update
                if (batch_num + 1) % accumulate == 0:
                    # step() performs 3 things:
                    # 1. allreduce gradients from all workers
                    # 2. checking the global_norm of gradients and clip them if necessary
                    # 3. averaging the gradients and apply updates
                    fp16_trainer.step(1, max_norm=1*num_workers)

                nsp_metric.update([ns_label], [classified])
                mlm_metric.update([masked_id], [decoded], [masked_weight])

                # logging
                if (step_num + 1) % (args.log_interval) == 0 and (batch_num + 1) % accumulate == 0:
                    log(begin_time, running_num_tks, running_mlm_loss / accumulate,
                        running_nsp_loss / accumulate, step_num, mlm_metric, nsp_metric,
                        trainer, args.log_interval)
                    begin_time = time.time()
                    running_mlm_loss = running_nsp_loss = running_num_tks = 0
                    mlm_metric.reset_local()
                    nsp_metric.reset_local()

                # saving checkpoints
                if (step_num + 1) % args.ckpt_interval == 0 and (batch_num + 1) % accumulate == 0:
                    if is_master_node:
                        save_states(step_num, trainer, args.ckpt_dir, local_rank)
                        if local_rank == 0:
                            save_parameters(step_num, model, args.ckpt_dir)
                    if data_eval:
                        # eval data is always based on a fixed npz file.
                        dataset_eval = get_pretrain_data_npz(data_eval, args.batch_size_eval, 1,
                                                             False, False, 1)
                        evaluate(dataset_eval, model, nsp_loss, mlm_loss, len(vocab), [ctx],
                                 args.log_interval, args.dtype)

                batch_num += 1

    if is_master_node:
        save_states(step_num, trainer, args.ckpt_dir, local_rank)
        if local_rank == 0:
            save_parameters(step_num, model, args.ckpt_dir)
    mx.nd.waitall()
    train_end_time = time.time()
    logging.info('Train cost={:.1f}s'.format(train_end_time - train_begin_time))
示例#29
0
def train_module():
    # Create input symbol
    data = mx.sym.var('data')
    if args.dtype == 'float16':
        data = mx.sym.Cast(data=data, dtype=np.float16)
        net.cast(np.float16)

    # Create output symbol
    out = net(data)
    if args.dtype == 'float16':
        out = mx.sym.Cast(data=out, dtype=np.float32)
    softmax = mx.sym.SoftmaxOutput(out, name='softmax')

    # Create model
    mod = mx.mod.Module(softmax, context=context)

    # Initialize parameters
    if args.use_pretrained:
        arg_params = {}
        for x in net.collect_params().values():
            x.reset_ctx(mx.cpu())
            arg_params[x.name] = x.data()
    else:
        arg_params = None
    aux_params = None
    mod.bind(data_shapes=train_data.provide_data,
             label_shapes=train_data.provide_label)
    mod.init_params(initializer, arg_params=arg_params, aux_params=aux_params)

    # Horovod: fetch and broadcast parameters
    (arg_params, aux_params) = mod.get_params()
    if arg_params is not None:
        hvd.broadcast_parameters(arg_params, root_rank=0)
    if aux_params is not None:
        hvd.broadcast_parameters(aux_params, root_rank=0)
    mod.set_params(arg_params=arg_params, aux_params=aux_params)

    # Setup validation data and callback during training
    eval_data = None
    if args.eval_epoch:
        eval_data = val_data
    batch_callback = None
    if args.log_interval > 0 and rank == 0:
        batch_callback = mx.callback.Speedometer(batch_size * num_workers,
                                                 args.log_interval)

    epoch_callback = None
    if args.save_frequency > 0:
        epoch_callback = mx.callback.do_checkpoint('%s-%d' %
                                                   (args.model, rank),
                                                   period=args.save_frequency)

    # Train model
    mod.fit(train_data,
            eval_data=eval_data,
            num_epoch=args.num_epochs,
            kvstore=None,
            batch_end_callback=batch_callback,
            epoch_end_callback=epoch_callback,
            optimizer=opt)

    # Evaluate performance if not using synthetic data
    if args.use_rec:
        acc_top1 = mx.metric.Accuracy()
        acc_top5 = mx.metric.TopKAccuracy(5)
        res = mod.score(val_data, [acc_top1, acc_top5])
        for name, val in res:
            logging.info('Epoch[%d] Rank[%d] Validation-%s=%f',
                         args.num_epochs - 1, rank, name, val)
示例#30
0
def train(net, train_data, val_data, eval_metric, batch_size, ctx, args):
    """Training pipeline"""
    kv = mx.kvstore.create(args.kv_store)
    net.collect_params().setattr('grad_req', 'null')
    net.collect_train_params().setattr('grad_req', 'write')
    optimizer_params = {
        'learning_rate': args.lr,
        'wd': args.wd,
        'momentum': args.momentum
    }
    if args.horovod:
        hvd.broadcast_parameters(net.collect_params(), root_rank=0)
        trainer = hvd.DistributedTrainer(
            net.collect_train_params(
            ),  # fix batchnorm, fix first stage, etc...
            'sgd',
            optimizer_params)
    else:
        trainer = gluon.Trainer(
            net.collect_train_params(
            ),  # fix batchnorm, fix first stage, etc...
            'sgd',
            optimizer_params,
            update_on_kvstore=(False if args.amp else None),
            kvstore=kv)

    if args.amp:
        amp.init_trainer(trainer)

    # lr decay policy
    lr_decay = float(args.lr_decay)
    lr_steps = sorted(
        [float(ls) for ls in args.lr_decay_epoch.split(',') if ls.strip()])
    lr_warmup = float(args.lr_warmup)  # avoid int division

    # TODO(zhreshold) losses?
    rpn_cls_loss = mx.gluon.loss.SigmoidBinaryCrossEntropyLoss(
        from_sigmoid=False)
    rpn_box_loss = mx.gluon.loss.HuberLoss(rho=1 / 9.)  # == smoothl1
    rcnn_cls_loss = mx.gluon.loss.SoftmaxCrossEntropyLoss()
    rcnn_box_loss = mx.gluon.loss.HuberLoss()  # == smoothl1
    metrics = [
        mx.metric.Loss('RPN_Conf'),
        mx.metric.Loss('RPN_SmoothL1'),
        mx.metric.Loss('RCNN_CrossEntropy'),
        mx.metric.Loss('RCNN_SmoothL1'),
    ]

    rpn_acc_metric = RPNAccMetric()
    rpn_bbox_metric = RPNL1LossMetric()
    rcnn_acc_metric = RCNNAccMetric()
    rcnn_bbox_metric = RCNNL1LossMetric()
    metrics2 = [
        rpn_acc_metric, rpn_bbox_metric, rcnn_acc_metric, rcnn_bbox_metric
    ]

    # set up logger
    logging.basicConfig()
    logger = logging.getLogger()
    logger.setLevel(logging.INFO)
    log_file_path = args.save_prefix + '_train.log'
    log_dir = os.path.dirname(log_file_path)
    if log_dir and not os.path.exists(log_dir):
        os.makedirs(log_dir)
    fh = logging.FileHandler(log_file_path)
    logger.addHandler(fh)
    logger.info(args)
    if args.verbose:
        logger.info('Trainable parameters:')
        logger.info(net.collect_train_params().keys())
    logger.info('Start training from [Epoch {}]'.format(args.start_epoch))
    best_map = [0]
    for epoch in range(args.start_epoch, args.epochs):
        mix_ratio = 1.0
        if not args.disable_hybridization:
            net.hybridize(static_alloc=args.static_alloc)
        rcnn_task = ForwardBackwardTask(net,
                                        trainer,
                                        rpn_cls_loss,
                                        rpn_box_loss,
                                        rcnn_cls_loss,
                                        rcnn_box_loss,
                                        mix_ratio=1.0)
        executor = Parallel(args.executor_threads,
                            rcnn_task) if not args.horovod else None
        if args.mixup:
            # TODO(zhreshold) only support evenly mixup now, target generator needs to be modified otherwise
            train_data._dataset._data.set_mixup(np.random.uniform, 0.5, 0.5)
            mix_ratio = 0.5
            if epoch >= args.epochs - args.no_mixup_epochs:
                train_data._dataset._data.set_mixup(None)
                mix_ratio = 1.0
        while lr_steps and epoch >= lr_steps[0]:
            new_lr = trainer.learning_rate * lr_decay
            lr_steps.pop(0)
            trainer.set_learning_rate(new_lr)
            logger.info("[Epoch {}] Set learning rate to {}".format(
                epoch, new_lr))
        for metric in metrics:
            metric.reset()
        tic = time.time()
        btic = time.time()
        base_lr = trainer.learning_rate
        rcnn_task.mix_ratio = mix_ratio
        print(len(train_data))
        for i, batch in enumerate(train_data):
            if epoch == 0 and i <= lr_warmup:
                # adjust based on real percentage
                new_lr = base_lr * get_lr_at_iter(i / lr_warmup,
                                                  args.lr_warmup_factor)
                if new_lr != trainer.learning_rate:
                    if i % args.log_interval == 0:
                        logger.info(
                            '[Epoch 0 Iteration {}] Set learning rate to {}'.
                            format(i, new_lr))
                    trainer.set_learning_rate(new_lr)
            batch = split_and_load(batch, ctx_list=ctx)
            metric_losses = [[] for _ in metrics]
            add_losses = [[] for _ in metrics2]
            if executor is not None:
                for data in zip(*batch):
                    executor.put(data)
            for j in range(len(ctx)):
                if executor is not None:
                    result = executor.get()
                else:
                    result = rcnn_task.forward_backward(list(zip(*batch))[0])
                if (not args.horovod) or hvd.rank() == 0:
                    for k in range(len(metric_losses)):
                        metric_losses[k].append(result[k])
                    for k in range(len(add_losses)):
                        add_losses[k].append(result[len(metric_losses) + k])
            for metric, record in zip(metrics, metric_losses):
                metric.update(0, record)
            for metric, records in zip(metrics2, add_losses):
                for pred in records:
                    metric.update(pred[0], pred[1])
            trainer.step(batch_size)

            # update metrics
            if (not args.horovod or hvd.rank() == 0) and args.log_interval \
                    and not (i + 1) % args.log_interval:
                msg = ','.join([
                    '{}={:.3f}'.format(*metric.get())
                    for metric in metrics + metrics2
                ])
                logger.info(
                    '[Epoch {}][Batch {}], Speed: {:.3f} samples/sec, {}'.
                    format(
                        epoch, i, args.log_interval * args.batch_size /
                        (time.time() - btic), msg))
                btic = time.time()

        if (not args.horovod) or hvd.rank() == 0:
            msg = ','.join(
                ['{}={:.3f}'.format(*metric.get()) for metric in metrics])
            logger.info('[Epoch {}] Training cost: {:.3f}, {}'.format(
                epoch, (time.time() - tic), msg))
            if not (epoch + 1) % args.val_interval:
                # consider reduce the frequency of validation to save time
                map_name, mean_ap = validate(net, val_data, ctx, eval_metric,
                                             args)
                map_name_train, mean_ap_train = validate(
                    net, train_data, ctx, eval_metric, args)
                if isinstance(map_name, list):
                    val_msg = '\n'.join([
                        '{}={}'.format(k, v)
                        for k, v in zip(map_name, mean_ap)
                    ])
                    train_msg = '\n'.join([
                        '{}={}'.format(k, v)
                        for k, v in zip(map_name_train, mean_ap_train)
                    ])
                    current_map = float(mean_ap[-1])
                else:
                    val_msg = '{}={}'.format(map_name, mean_ap)
                    train_msg = '{}={}'.format(map_name_train, mean_ap_train)
                    current_map = mean_ap
                logger.info('[Epoch {}] Validation: {}'.format(epoch, val_msg))
                logger.info('[Epoch {}] Train: {}'.format(epoch, train_msg))
            else:
                current_map = 0.
            save_params(net, logger, best_map, current_map, epoch,
                        args.save_interval,
                        os.path.join(args.model_dir, 'fastrcnn'))
        executor.__del__()
示例#31
0
def train_gluon():
    if args.save_dir:
        save_dir = args.save_dir
        save_dir = os.path.expanduser(save_dir)
        makedirs(save_dir)
    else:
        save_dir = './'
        save_frequency = 0

    def evaluate(epoch):
        acc_top1 = mx.metric.Accuracy()
        acc_top5 = mx.metric.TopKAccuracy(5)
        for _, batch in enumerate(val_data):
            data, label = val_batch_fn(batch, context)
            output = net(data.astype(args.dtype, copy=False))
            acc_top1.update([label], [output])
            acc_top5.update([label], [output])

        top1_name, top1_acc = acc_top1.get()
        top5_name, top5_acc = acc_top5.get()
        if MPI is not None:
            comm = MPI.COMM_WORLD
            res1 = comm.gather(top1_acc, root=0)
            res2 = comm.gather(top5_acc, root=0)
        if rank == 0:
            if MPI is not None:
                #logging.info('MPI gather res1: {}'.format(res1))
                top1_acc = sum(res1) / len(res1)
                top5_acc = sum(res2) / len(res2)
            logging.info(
                'Epoch[%d] Rank[%d]\tValidation-%s=%f\tValidation-%s=%f',
                epoch, rank, top1_name, top1_acc, top5_name, top5_acc)

    # Hybridize and initialize model
    net.hybridize()
    #net.initialize(initializer, ctx=context)
    if args.resume_params is not '':
        net.load_parameters(args.resume_params, ctx=context)

    else:
        net.initialize(initializer, ctx=context)

    if args.no_wd:
        for k, v in net.collect_params('.*beta|.*gamma|.*bias').items():
            v.wd_mult = 0.0

    # Horovod: fetch and broadcast parameters
    params = net.collect_params()
    if params is not None:
        hvd.broadcast_parameters(params, root_rank=0)

    # Create optimizer
    optimizer = 'nag'
    optimizer_params = {
        'wd': args.wd,
        'momentum': args.momentum,
        'lr_scheduler': lr_sched
    }
    if args.dtype == 'float16':
        optimizer_params['multi_precision'] = True
    opt = mx.optimizer.create(optimizer, **optimizer_params)

    # Horovod: create DistributedTrainer, a subclass of gluon.Trainer
    trainer = hvd.DistributedTrainer(params, opt)
    if args.resume_states is not '':
        trainer.load_states(args.resume_states)

    # Create loss function and train metric
    if args.label_smoothing or args.mixup:
        sparse_label_loss = False
    else:
        sparse_label_loss = True

    distillation = args.teacher is not None and args.hard_weight < 1.0
    if distillation:
        teacher = get_model(args.teacher,
                            pretrained=True,
                            classes=num_classes,
                            ctx=context)
        teacher.hybridize()
        teacher.cast(args.dtype)
        loss_fn = gcv.loss.DistillationSoftmaxCrossEntropyLoss(
            temperature=args.temperature,
            hard_weight=args.hard_weight,
            sparse_label=sparse_label_loss)
        if rank == 0:
            logging.info('Using Distillation')
    else:
        loss_fn = gluon.loss.SoftmaxCrossEntropyLoss(
            sparse_label=sparse_label_loss)
    if args.mixup:
        train_metric = mx.metric.RMSE()
    else:
        train_metric = mx.metric.Accuracy()

    def mixup_transform(label, classes, lam=1, eta=0.0):
        if isinstance(label, mx.nd.NDArray):
            label = [label]
        res = []
        for l in label:
            y1 = l.one_hot(classes,
                           on_value=1 - eta + eta / classes,
                           off_value=eta / classes)
            y2 = l[::-1].one_hot(classes,
                                 on_value=1 - eta + eta / classes,
                                 off_value=eta / classes)
            res.append(lam * y1 + (1 - lam) * y2)
        return res

    def smooth(label, classes, eta=0.1):
        if isinstance(label, mx.NDArray):
            label = [label]
        smoothed = []
        for l in label:
            res = l.one_hot(classes,
                            on_value=1 - eta + eta / classes,
                            off_value=eta / classes)
            smoothed.append(res)
        return smoothed

    # Train model
    for epoch in range(args.resume_epoch, args.num_epochs):
        drop_scheduler(epoch)
        tic = time.time()
        train_metric.reset()

        btic = time.time()
        for nbatch, batch in enumerate(train_data, start=1):
            data, label = train_batch_fn(batch, context)
            data, label = [data], [label]
            if args.mixup:
                lam = np.random.beta(args.mixup_alpha, args.mixup_alpha)
                if epoch >= args.num_epochs - args.mixup_off_epoch:
                    lam = 1
                data = [lam * X + (1 - lam) * X[::-1] for X in data]

                if args.label_smoothing:
                    eta = 0.1
                else:
                    eta = 0.0
                label = mixup_transform(label, num_classes, lam, eta)

            elif args.label_smoothing:
                hard_label = label
                label = smooth(label, num_classes)

            if distillation:
                teacher_prob = [mx.nd.softmax(teacher(X.astype(args.dtype, copy=False)) / args.temperature) \
                                for X in data]

            with autograd.record():
                outputs = [net(X.astype(args.dtype, copy=False)) for X in data]
                if distillation:
                    loss = [
                        loss_fn(yhat.astype('float32', copy=False),
                                y.astype('float32', copy=False),
                                p.astype('float32', copy=False))
                        for yhat, y, p in zip(outputs, label, teacher_prob)
                    ]
                else:
                    loss = [
                        loss_fn(yhat, y.astype(args.dtype, copy=False))
                        for yhat, y in zip(outputs, label)
                    ]
            for l in loss:
                l.backward()
            trainer.step(batch_size)

            if args.mixup:
                output_softmax = [mx.nd.SoftmaxActivation(out.astype('float32', copy=False)) \
                                  for out in outputs]
                train_metric.update(label, output_softmax)
            else:
                if args.label_smoothing:
                    train_metric.update(hard_label, outputs)
                else:
                    train_metric.update(label, outputs)

            if args.log_interval and nbatch % args.log_interval == 0:
                if rank == 0:
                    logging.info('Epoch[%d] Batch[%d] Loss[%.3f]', epoch,
                                 nbatch, loss[0].mean().asnumpy()[0])

                    train_metric_name, train_metric_score = train_metric.get()
                    logging.info('Epoch[%d] Rank[%d] Batch[%d]\t%s=%f\tlr=%f',
                                 epoch, rank, nbatch, train_metric_name,
                                 train_metric_score, trainer.learning_rate)
                    #batch_speed = num_workers * batch_size * args.log_interval / (time.time() - btic)
                    #logging.info('Epoch[%d] Batch[%d]\tSpeed: %.2f samples/sec',
                    #             epoch, nbatch, batch_speed)
                btic = time.time()

        # Report metrics
        elapsed = time.time() - tic
        _, acc = train_metric.get()
        if rank == 0:
            logging.info(
                'Epoch[%d] Rank[%d] Batch[%d]\tTime cost=%.2f\tTrain-metric=%f',
                epoch, rank, nbatch, elapsed, acc)
            epoch_speed = num_workers * batch_size * nbatch / elapsed
            logging.info('Epoch[%d]\tSpeed: %.2f samples/sec', epoch,
                         epoch_speed)

        # Evaluate performance
        if args.eval_frequency and (epoch + 1) % args.eval_frequency == 0:
            evaluate(epoch)

        # Save model
        if args.save_frequency and (epoch + 1) % args.save_frequency == 0:
            net.save_parameters('%s/imagenet-%s-%d.params' %
                                (save_dir, args.model, epoch))
            trainer.save_states('%s/imagenet-%s-%d.states' %
                                (save_dir, args.model, epoch))

    # Evaluate performance at the end of training
    evaluate(epoch)

    net.save_parameters('%s/imagenet-%s-%d.params' %
                        (save_dir, args.model, args.num_epochs - 1))
    trainer.save_states('%s/imagenet-%s-%d.states' %
                        (save_dir, args.model, args.num_epochs - 1))