def ordinary_kriging(prop, grid, radiuses, max_neighbours, cov_model): out_prop = _clone_prop(prop) okp = _HPGL_OK_PARAMS( covariance_type = cov_model.type, ranges = cov_model.ranges, angles = cov_model.angles, sill = cov_model.sill, nugget = cov_model.nugget, radiuses = radiuses, max_neighbours = max_neighbours) _hpgl_so.hpgl_ordinary_kriging( _create_hpgl_cont_masked_array(prop, grid), C.byref(okp), _create_hpgl_cont_masked_array(out_prop, grid)) return out_prop
def lvm_kriging(prop, grid, mean_data, radiuses, max_neighbours, cov_model): out_prop = _clone_prop(prop) okp = _HPGL_OK_PARAMS( covariance_type = cov_model.type, ranges = cov_model.ranges, angles = cov_model.angles, sill = cov_model.sill, nugget = cov_model.nugget, radiuses = radiuses, max_neighbours = max_neighbours) sh_data = (C.c_int * 3)(grid.x, grid.y, grid.z) sh = _HPGL_SHAPE(data=sh_data) _hpgl_so.hpgl_lvm_kriging( prop.data, prop.mask, C.byref(sh), mean_data, C.byref(sh), C.byref(okp), out_prop.data, out_prop.mask, C.byref(sh)) return out_prop