示例#1
0
def vizInterSequenceClusters(traces, outputDir, cellsType, numCells, 
                             numClasses, ignoreNoise=True):
  clusters = assignClusters(traces)

  # compare inter-cluster distance over time
  numRptsPerCategory = {}
  categories = np.unique(traces['actualCategory'])
  repetition = np.array(clusters['repetition'])
  for category in categories:
    numRptsPerCategory[category] = np.max(
      repetition[np.array(traces['actualCategory']) == category])

  SDRclusters = []
  clusterAssignments = []
  numRptsMin = np.min(numRptsPerCategory.values()).astype('int32')
  for rpt in range(numRptsMin + 1):
    idx0 = np.logical_and(np.array(traces['actualCategory']) == 0,
                          repetition == rpt)
    idx1 = np.logical_and(np.array(traces['actualCategory']) == 1,
                          repetition == rpt)
    idx2 = np.logical_and(np.array(traces['actualCategory']) == 2,
                          repetition == rpt)

    c0slice = [traces['tmPredictedActiveCells'][i] for i in range(len(idx0)) if
               idx0[i]]
    c1slice = [traces['tmPredictedActiveCells'][i] for i in range(len(idx1)) if
               idx1[i]]
    c2slice = [traces['tmPredictedActiveCells'][i] for i in range(len(idx2)) if
               idx2[i]]

    if not ignoreNoise:
      SDRclusters.append(c0slice)
      clusterAssignments.append(0)
    SDRclusters.append(c1slice)
    clusterAssignments.append(1)
    SDRclusters.append(c2slice)
    clusterAssignments.append(2)

    print " Presentation #{}: ".format(rpt)
    if not ignoreNoise:
      d01 = clusterDist(c0slice, c1slice, numCells)
      print '=> d(c0, c1): %s' % d01
      d02 = clusterDist(c0slice, c2slice, numCells)
      print '=> d(c0, c2): %s' % d02

    d12 = clusterDist(c1slice, c2slice, numCells)
    print '=> d(c1, c2): %s' % d12

  npos, distanceMat = projectClusters2D(SDRclusters, numCells)
  title = 'Inter-sequence clusters in 2D (using %s)' % cellsType
  outputFile = '%s/%s' % (outputDir, title)
  viz2DProjection(title, outputFile, numClasses, clusterAssignments, npos)
  title = 'Inter-sequence clusters distances (using %s)' % cellsType
  outputFile = '%s/%s' % (outputDir, title)
  plotDistanceMat(distanceMat, title, outputFile)
示例#2
0
def vizInterCategoryClusters(traces, outputDir, cellsType,
                             numCells, pointsToPlot=100):
  sdrs = convertNonZeroToSDR(traces[cellsType][-pointsToPlot:], numCells)

  clusterAssignments = traces['actualCategory'][-pointsToPlot:]
  numClasses = len(set(clusterAssignments))

  npos, distanceMat = project2D(sdrs)

  title = 'Actual category clusters in 2D (using %s)' % cellsType
  outputFile = '%s/%s' % (outputDir, title)
  viz2DProjection(title, outputFile, numClasses, clusterAssignments, npos)
  title = 'Actual category clusters distances (using %s)' % cellsType
  outputFile = '%s/%s' % (outputDir, title)
  plotDistanceMat(distanceMat, title, outputFile)
示例#3
0
def vizInterCategoryClusters(traces,
                             outputDir,
                             cellsType,
                             numCells,
                             pointsToPlot=100):
    sdrs = convertNonZeroToSDR(traces[cellsType][-pointsToPlot:], numCells)

    clusterAssignments = traces['actualCategory'][-pointsToPlot:]
    numClasses = len(set(clusterAssignments))

    npos, distanceMat = project2D(sdrs)

    title = 'Actual category clusters in 2D (using %s)' % cellsType
    outputFile = '%s/%s' % (outputDir, title)
    viz2DProjection(title, outputFile, numClasses, clusterAssignments, npos)
    title = 'Actual category clusters distances (using %s)' % cellsType
    outputFile = '%s/%s' % (outputDir, title)
    plotDistanceMat(distanceMat, title, outputFile)
def main():
  numClasses = 7
  numSDRsPerClass = 20
  noiseLevel = 0.1
  vizTitle = 'MDS, noise level: {}'.format(noiseLevel)

  # SDR parameters
  n = 1024
  w = 20

  sdrs = generateSDRs(numClasses, numSDRsPerClass, n, w, noiseLevel)

  clusterAssignments = assignClusters(sdrs, numClasses, numSDRsPerClass)

  npos, distanceMat = project2D(sdrs)

  viz2DProjection(vizTitle, numClasses, clusterAssignments, npos)

  plotDistanceMat(distanceMat)
def main():
  numClasses = 7
  numSDRsPerClass = 20
  noiseLevel = 0.1
  vizTitle = 'MDS, noise level: {}'.format(noiseLevel)

  # SDR parameters
  n = 1024
  w = 20

  sdrs = generateSDRs(numClasses, numSDRsPerClass, n, w, noiseLevel)

  clusterAssignments = assignClusters(sdrs, numClasses, numSDRsPerClass)

  npos, distanceMat = project2D(sdrs)

  outputFile = '2d_projections.png'
  viz2DProjection(vizTitle, outputFile, numClasses, clusterAssignments, npos)
  outputFile = 'distance_matrix.png'
  plotDistanceMat(distanceMat, 'Inter-cluster distances', outputFile,
                  showPlot=True)
示例#6
0
def main():
    numClasses = 7
    numSDRsPerClass = 20
    noiseLevel = 0.1
    vizTitle = 'MDS, noise level: {}'.format(noiseLevel)

    # SDR parameters
    n = 1024
    w = 20

    sdrs = generateSDRs(numClasses, numSDRsPerClass, n, w, noiseLevel)

    clusterAssignments = assignClusters(sdrs, numClasses, numSDRsPerClass)

    npos, distanceMat = project2D(sdrs)

    outputFile = '2d_projections.png'
    viz2DProjection(vizTitle, outputFile, numClasses, clusterAssignments, npos)
    outputFile = 'distance_matrix.png'
    plotDistanceMat(distanceMat,
                    'Inter-cluster distances',
                    outputFile,
                    showPlot=True)
示例#7
0
def vizInterSequenceClusters(traces,
                             outputDir,
                             cellsType,
                             numCells,
                             numClasses,
                             ignoreNoise=True):
    clusters = assignClusters(traces)

    # compare inter-cluster distance over time
    numRptsPerCategory = {}
    categories = np.unique(traces['actualCategory'])
    repetition = np.array(clusters['repetition'])
    for category in categories:
        numRptsPerCategory[category] = np.max(
            repetition[np.array(traces['actualCategory']) == category])

    SDRclusters = []
    clusterAssignments = []
    numRptsMin = np.min(numRptsPerCategory.values()).astype('int32')
    for rpt in range(numRptsMin + 1):
        idx0 = np.logical_and(
            np.array(traces['actualCategory']) == 0, repetition == rpt)
        idx1 = np.logical_and(
            np.array(traces['actualCategory']) == 1, repetition == rpt)
        idx2 = np.logical_and(
            np.array(traces['actualCategory']) == 2, repetition == rpt)

        c0slice = [
            traces['tmPredictedActiveCells'][i] for i in range(len(idx0))
            if idx0[i]
        ]
        c1slice = [
            traces['tmPredictedActiveCells'][i] for i in range(len(idx1))
            if idx1[i]
        ]
        c2slice = [
            traces['tmPredictedActiveCells'][i] for i in range(len(idx2))
            if idx2[i]
        ]

        if not ignoreNoise:
            SDRclusters.append(c0slice)
            clusterAssignments.append(0)
        SDRclusters.append(c1slice)
        clusterAssignments.append(1)
        SDRclusters.append(c2slice)
        clusterAssignments.append(2)

        print " Presentation #{}: ".format(rpt)
        if not ignoreNoise:
            d01 = clusterDist(c0slice, c1slice, numCells)
            print '=> d(c0, c1): %s' % d01
            d02 = clusterDist(c0slice, c2slice, numCells)
            print '=> d(c0, c2): %s' % d02

        d12 = clusterDist(c1slice, c2slice, numCells)
        print '=> d(c1, c2): %s' % d12

    npos, distanceMat = projectClusters2D(SDRclusters, numCells)
    title = 'Inter-sequence clusters in 2D (using %s)' % cellsType
    outputFile = '%s/%s' % (outputDir, title)
    viz2DProjection(title, outputFile, numClasses, clusterAssignments, npos)
    title = 'Inter-sequence clusters distances (using %s)' % cellsType
    outputFile = '%s/%s' % (outputDir, title)
    plotDistanceMat(distanceMat, title, outputFile)