示例#1
0
def serve(model, port=16118, debug=True, **fit_kwargs):
    """
    :param model: Sklearn-compatible model, that is pickleable and has interface for .fit(X, y) and .predict_proba(X)
    :param port: specify localhost port where the model will be served
    :param debug: whether to start at debug mode
    :return:
    """
    init_model_server(create_model_func=partial(SklearnTextClassifier,
                                                model=model),
                      train_script=partial(fit_sklearn_classifier,
                                           model=model),
                      redis_queue=os.environ.get('RQ_QUEUE_NAME', 'default'),
                      redis_host=os.environ.get('REDIS_HOST', 'localhost'),
                      redis_port=os.environ.get('REDIS_HOST', 6379),
                      **fit_kwargs)

    app.run(host='localhost', port=port, debug=debug)
示例#2
0
def serve(learner_script,
          port=16118,
          debug=True,
          image_dir='~/.heartex/images',
          num_iter=10,
          **fit_kwargs):
    """
    :param learner_script: function that takes (DataBunch, str) as input and returns Learner object
    :param port: specify localhost port where the model will be served
    :param debug: whether to start at debug mode
    :return:
    """
    init_model_server(create_model_func=FastaiImageClassifier,
                      train_script=fit_fastai_image_classifier,
                      learner_script=learner_script,
                      num_iter=num_iter,
                      image_dir=image_dir,
                      redis_queue=os.environ.get('RQ_QUEUE_NAME', 'default'),
                      redis_host=os.environ.get('REDIS_HOST', 'localhost'),
                      redis_port=os.environ.get('REDIS_HOST', 6379),
                      **fit_kwargs)

    app.run(host='0.0.0.0', port=port, debug=debug)
示例#3
0
import os
import argparse

from ner import TransformersBasedTagger, train_ner
from htx import app, init_model_server

init_model_server(
    # refer to class definition that inherits htx.BaseModel and implements load() and predict() methods
    create_model_func=TransformersBasedTagger,
    # training script that will be called within RQ
    train_script=train_ner,
    # name of the Redis queue
    redis_queue=os.environ.get('RQ_QUEUE_NAME', 'default'),
    # Redis host
    redis_host=os.environ.get('REDIS_HOST', 'localhost'),
    # here we pass the kwargs parameters to train script
    pretrained_model=os.environ.get('pretrained_model', 'bert-base-uncased'),
    cache_dir=os.environ.get('cache_dir', '~/.heartex/cache'))

if __name__ == "__main__":
    parser = argparse.ArgumentParser()
    parser.add_argument('--port', dest='port', default='9090')
    args = parser.parse_args()
    app.run(host='localhost', port=args.port, debug=True)
import os

from htx import app, init_model_server
from bert_classifier.train import train_classifier
from bert_classifier.serve import LabelStudioTransformersClassifier

init_model_server(
    create_model_func=LabelStudioTransformersClassifier,
    train_script=train_classifier,
    # name of the Redis queue
    redis_queue=os.environ.get('RQ_QUEUE_NAME', 'default'),
    # Redis host
    redis_host=os.environ.get('REDIS_HOST', 'localhost'),
    # here we pass the kwargs parameters to train script
    pretrained_model=os.environ.get('pretrained_model',
                                    'bert-base-multilingual-cased'),
    cache_dir=os.environ.get('cache_dir', '/data/cache'),
    model_dir=os.environ.get('model_dir', '/data/model'),
    train_logs=os.environ.get('train_logs', '/data/train_logs'))
示例#5
0
import os
import logging
import argparse

logging.basicConfig(level=logging.INFO)

from htx import app, init_model_server
from image_classifier import FastaiImageClassifier, train_script


init_model_server(
    create_model_func=FastaiImageClassifier,
    train_script=train_script,
    num_iter=10,
    image_dir='~/.heartex/images',
    redis_queue=os.environ.get('RQ_QUEUE_NAME', 'default'),
    redis_host=os.environ.get('REDIS_HOST', 'localhost'),
    redis_port=os.environ.get('REDIS_PORT', 6379),
)


if __name__ == "__main__":
    parser = argparse.ArgumentParser()
    parser.add_argument('--port', dest='port', default='9090')
    args = parser.parse_args()
    app.run(host='localhost', port=args.port, debug=True)
示例#6
0
import os
import argparse

from tfhub_classifier import TFHubClassifier
from htx import app, init_model_server

init_model_server(
    # refer to class definition that inherits htx.BaseModel and implements load() and predict() methods
    create_model_func=TFHubClassifier,
    # training script that will be called within RQ
    train_script=TFHubClassifier.fit_single_label,
    # name of the Redis queue
    redis_queue=os.environ.get('RQ_QUEUE_NAME', 'default'),
    # Redis host
    redis_host=os.environ.get('REDIS_HOST', 'localhost'),
    # here we pass the kwargs parameters to train script
    tfhub_module_spec=os.environ.get(
        'tfhub_module_spec',
        'https://tfhub.dev/google/universal-sentence-encoder/2'))

if __name__ == "__main__":
    parser = argparse.ArgumentParser()
    parser.add_argument('--port', dest='port', default='9090')
    args = parser.parse_args()
    app.run(host='localhost', port=args.port, debug=True)
示例#7
0
import os
import logging
import argparse

logging.basicConfig(level=logging.INFO)

from htx import app, init_model_server
from image_classifier import FastaiImageClassifier, train_script
from settings import REDIS_HOST, REDIS_PORT, RQ_QUEUE_NAME

init_model_server(
    create_model_func=FastaiImageClassifier,
    train_script=train_script,
    num_iter=10,
    image_dir='~/.heartex/images',
    redis_queue=RQ_QUEUE_NAME,
    redis_host=REDIS_HOST,
    redis_port=REDIS_PORT,
)

if __name__ == "__main__":
    parser = argparse.ArgumentParser()
    parser.add_argument('--port', dest='port', default='9090')
    args = parser.parse_args()
    app.run(host='localhost', port=args.port, debug=True)