def test_parallel_hubness_equal_serial_hubness_similarity_based(self): similarity = random_sparse_matrix(size=1000) S_k_p, D_k_p, N_k_p = hubness_p( similarity, k=5, metric='similarity', verbose=False, n_jobs=-1) S_k_s, D_k_s, N_k_s = hubness_s( similarity, k=5, metric='similarity', verbose=False) result = np.allclose(S_k_p, S_k_s) & \ np.allclose(D_k_p, D_k_s) & \ np.allclose(N_k_p, N_k_s) return self.assertTrue(result)
def setUp(self): np.random.seed(626) self.matrix_n = 500 self.density = 0.02 self.similarity = random_sparse_matrix( size=self.matrix_n, density=self.density)