示例#1
0
 def test_model_script_panoptic(self):
     model = detr_resnet50_panoptic(pretrained=False).eval()
     scripted_model = torch.jit.script(model)
     x = nested_tensor_from_tensor_list(
         [torch.rand(3, 200, 200),
          torch.rand(3, 200, 250)])
     out = model(x)
     out_script = scripted_model(x)
     self.assertTrue(out["pred_logits"].equal(out_script["pred_logits"]))
     self.assertTrue(out["pred_boxes"].equal(out_script["pred_boxes"]))
     self.assertTrue(out["pred_masks"].equal(out_script["pred_masks"]))
示例#2
0
    def test_model_onnx_detection_panoptic(self):
        model = detr_resnet50_panoptic(pretrained=False).eval()
        dummy_image = torch.ones(1, 3, 800, 800) * 0.3
        model(dummy_image)

        # Test exported model on images of different size, or dummy input
        self.run_model(
            model,
            [(torch.rand(1, 3, 750, 800), )],
            input_names=["inputs"],
            output_names=["pred_logits", "pred_boxes", "pred_masks"],
            tolerate_small_mismatch=True,
        )