def setUp(self) -> None: if os.path.exists(REPO_NAME): shutil.rmtree(REPO_NAME, onerror=set_write_permission_and_retry) logger.info(f"Does {REPO_NAME} exist: {os.path.exists(REPO_NAME)}") repo = Repository( REPO_NAME, clone_from=f"{USER}/{REPO_NAME}", use_auth_token=self._token, git_user="******", git_email="*****@*****.**", ) with repo.commit("Add file to main branch"): with open("dummy_file.txt", "w+") as f: f.write("v1") self.first_commit_hash = repo.git_head_hash() with repo.commit("Add file to main branch"): with open("dummy_file.txt", "w+") as f: f.write("v2") with open("dummy_file_2.txt", "w+") as f: f.write("v3") self.second_commit_hash = repo.git_head_hash() with repo.commit("Add file to other branch", branch="other"): with open("dummy_file_2.txt", "w+") as f: f.write("v4") self.third_commit_hash = repo.git_head_hash()
def setUp(self) -> None: repo = Repository( REPO_NAME, clone_from=f"{USER}/{REPO_NAME}", use_auth_token=self._token, git_user="******", git_email="*****@*****.**", ) with repo.commit("Add file to main branch"): with open("dummy_file.txt", "w+") as f: f.write("v1") self.first_commit_hash = repo.git_head_hash() with repo.commit("Add file to main branch"): with open("dummy_file.txt", "w+") as f: f.write("v2") with open("dummy_file_2.txt", "w+") as f: f.write("v3") self.second_commit_hash = repo.git_head_hash() with repo.commit("Add file to other branch", branch="other"): with open("dummy_file_2.txt", "w+") as f: f.write("v4") self.third_commit_hash = repo.git_head_hash()
def push_to_hf_hub( model, local_dir, repo_namespace_or_url=None, commit_message='Add model', use_auth_token=True, git_email=None, git_user=None, revision=None, model_config=None, ): if repo_namespace_or_url: repo_owner, repo_name = repo_namespace_or_url.rstrip('/').split( '/')[-2:] else: if isinstance(use_auth_token, str): token = use_auth_token else: token = HfFolder.get_token() if token is None: raise ValueError( "You must login to the Hugging Face hub on this computer by typing `transformers-cli login` and " "entering your credentials to use `use_auth_token=True`. Alternatively, you can pass your own " "token as the `use_auth_token` argument.") repo_owner = HfApi().whoami(token)['name'] repo_name = Path(local_dir).name repo_url = f'https://huggingface.co/{repo_owner}/{repo_name}' repo = Repository( local_dir, clone_from=repo_url, use_auth_token=use_auth_token, git_user=git_user, git_email=git_email, revision=revision, ) # Prepare a default model card that includes the necessary tags to enable inference. readme_text = f'---\ntags:\n- image-classification\n- timm\nlibrary_tag: timm\n---\n# Model card for {repo_name}' with repo.commit(commit_message): # Save model weights and config. save_for_hf(model, repo.local_dir, model_config=model_config) # Save a model card if it doesn't exist. readme_path = Path(repo.local_dir) / 'README.md' if not readme_path.exists(): readme_path.write_text(readme_text) return repo.git_remote_url()
def push_to_hf_hub(model: Any, model_name: str, task: str, **kwargs) -> None: """Save model and its configuration on HF hub >>> from doctr.models import login_to_hub, push_to_hf_hub >>> from doctr.models.recognition import crnn_mobilenet_v3_small >>> login_to_hub() >>> model = crnn_mobilenet_v3_small(pretrained=True) >>> push_to_hf_hub(model, 'my-model', 'recognition', arch='crnn_mobilenet_v3_small') Args: model: TF or PyTorch model to be saved model_name: name of the model which is also the repository name task: task name **kwargs: keyword arguments for push_to_hf_hub """ run_config = kwargs.get("run_config", None) arch = kwargs.get("arch", None) if run_config is None and arch is None: raise ValueError("run_config or arch must be specified") if task not in [ "classification", "detection", "recognition", "obj_detection" ]: raise ValueError( "task must be one of classification, detection, recognition, obj_detection" ) # default readme readme = textwrap.dedent(f""" --- language: en --- <p align="center"> <img src="https://github.com/mindee/doctr/releases/download/v0.3.1/Logo_doctr.gif" width="60%"> </p> **Optical Character Recognition made seamless & accessible to anyone, powered by TensorFlow 2 & PyTorch** ## Task: {task} https://github.com/mindee/doctr ### Example usage: ```python >>> from doctr.io import DocumentFile >>> from doctr.models import ocr_predictor, from_hub >>> img = DocumentFile.from_images(['<image_path>']) >>> # Load your model from the hub >>> model = from_hub('mindee/my-model') >>> # Pass it to the predictor >>> # If your model is a recognition model: >>> predictor = ocr_predictor(det_arch='db_mobilenet_v3_large', >>> reco_arch=model, >>> pretrained=True) >>> # If your model is a detection model: >>> predictor = ocr_predictor(det_arch=model, >>> reco_arch='crnn_mobilenet_v3_small', >>> pretrained=True) >>> # Get your predictions >>> res = predictor(img) ``` """) # add run configuration to readme if available if run_config is not None: arch = run_config.arch readme += textwrap.dedent(f"""### Run Configuration \n{json.dumps(vars(run_config), indent=2, ensure_ascii=False)}""" ) if arch not in AVAILABLE_ARCHS[task]: # type: ignore raise ValueError(f"Architecture: {arch} for task: {task} not found.\ \nAvailable architectures: {AVAILABLE_ARCHS}") commit_message = f"Add {model_name} model" local_cache_dir = os.path.join(os.path.expanduser("~"), ".cache", "huggingface", "hub", model_name) repo_url = HfApi().create_repo(model_name, token=HfFolder.get_token(), exist_ok=False) repo = Repository(local_dir=local_cache_dir, clone_from=repo_url, use_auth_token=True) with repo.commit(commit_message): _save_model_and_config_for_hf_hub(model, repo.local_dir, arch=arch, task=task) readme_path = Path(repo.local_dir) / "README.md" readme_path.write_text(readme) repo.git_push()