def predict_variant(X):
    np.random.seed(42)
    return np.array(
        [1 if r > 0.0 else -1 for r in np.random.normal(0, 1, len(X))])


def class_based(dataf, sex="male", pclass=1):
    predicate = (dataf["sex"] == sex) & (dataf["pclass"] == pclass)
    return np.array(predicate).astype(int) * 2 - 1


@pytest.mark.parametrize(
    "test_fn",
    select_tests(
        include=flatten([general_checks, outlier_checks, nonmeta_checks]),
        exclude=[
            "check_outliers_train",
            "check_estimators_nan_inf",
            "check_estimators_empty_data_messages",
            "check_complex_data",
            "check_dtype_object",
            "check_classifier_data_not_an_array",
            "check_fit1d",
            "check_methods_subset_invariance",
            "check_fit2d_predict1d",
            "check_estimator_sparse_data",
        ],
    ),
)
def test_estimator_checks(test_fn):
def predict(X):
    np.random.seed(42)
    return np.array(
        [1 if r > 0.5 else 0 for r in np.random.normal(0, 1, len(X))])


def predict_variant(X):
    np.random.seed(42)
    return np.array(
        [1 if r > 0.0 else 0 for r in np.random.normal(0, 1, len(X))])


@pytest.mark.parametrize(
    "test_fn",
    select_tests(
        include=flatten([general_checks, regressor_checks, nonmeta_checks]),
        exclude=[
            "check_methods_subset_invariance",
            "check_fit2d_1sample",
            "check_fit2d_1feature",
            "check_regressors_train",
            "check_fit2d_predict1d",
            "check_fit1d",
            "check_regressor_data_not_an_array",
            "check_supervised_y_2d",
            "check_supervised_y_no_nan",
            "check_dtype_object",
            "check_complex_data",
            "check_estimators_empty_data_messages",
            "check_estimators_nan_inf",
            "check_estimator_sparse_data",
示例#3
0
from tests.conftest import (
    select_tests,
    general_checks,
    transformer_checks,
    nonmeta_checks,
)


def double(x, factor=2):
    return x * factor


@pytest.mark.parametrize(
    "test_fn",
    select_tests(
        include=flatten([general_checks, transformer_checks, nonmeta_checks]),
        exclude=[
            "check_estimators_nan_inf",
            "check_estimators_empty_data_messages",
            "check_transformer_data_not_an_array",
            "check_dtype_object",
            "check_complex_data",
            "check_fit1d",
        ],
    ),
)
def test_estimator_checks(test_fn):
    clf = PipeTransformer(func=double)
    test_fn(PipeTransformer.__name__, clf)

示例#4
0
from hulearn.preprocessing import PipeTransformer
from hulearn.outlier import InteractiveOutlierDetector
from hulearn.common import flatten

from tests.conftest import (
    select_tests,
    general_checks,
    classifier_checks,
    nonmeta_checks,
)


@pytest.mark.parametrize(
    "test_fn",
    select_tests(
        include=flatten([general_checks, classifier_checks, nonmeta_checks]),
        exclude=[
            "check_estimators_pickle",
            "check_estimator_sparse_data",
            "check_estimators_nan_inf",
            "check_pipeline_consistency",
            "check_complex_data",
            "check_fit2d_predict1d",
            "check_methods_subset_invariance",
            "check_fit1d",
            "check_dict_unchanged",
            "check_classifier_data_not_an_array",
            "check_classifiers_one_label",
            "check_classifiers_classes",
            "check_classifiers_train",
            "check_supervised_y_2d",