示例#1
0
def cee_accuracy():
    from hw6code import ERROR_CEE, Neural_Network
    import random
    np.random.seed(12)
    random.seed(13)
    data = load_trains()
    trains = data[:-10000]
    tests = data[-5000:]
    nnetc = Neural_Network(error_function=ERROR_CEE)
    nnetc.progressive_init(trains)

    def get_accuracy():
        total = 0
        correct = 0
        for test in tests:
            hw = nnetc.predict(test)
            hj = vector_to_label(hw)
            if hj == test.yl:
                correct += 1
            total += 1
        return correct / total

    for reps_goal in xrange(0, 300000, 1000):
        nnetc.reps = reps_goal
        nnetc.prog_train()
        accuracyc = get_accuracy()
        print reps_goal, accuracyc
        ceelist.append(accuracyc)
示例#2
0
def training_accuracy():
    from hw6code import Neural_Network, ERROR_CEE, ERROR_MSE
    import random
    np.random.seed(12)
    random.seed(13)
    data = load_trains()
    nnet = Neural_Network(error_function=ERROR_CEE)
    nnet.train(data)
    total = 0
    correct = 0
    for test in data:
        hw = nnet.predict(test)
        hj = vector_to_label(hw)
        if hj == test.yl:
            correct += 1
        total += 1
    print correct / total
示例#3
0
def kaggle():
    from hw6code import Neural_Network
    import random
    import csv
    np.random.seed(12)
    random.seed(13)
    trains = load_trains()
    tests = load_tests()
    nnet = Neural_Network()
    nnet.train(trains)

    count = 1
    print("WRITING")
    with open('hw6submit.csv', 'w') as f:
        digitwriter = csv.writer(f, delimiter=',')
        digitwriter.writerow(['Id', 'Category'])
        for test in tests:
            hv = nnet.predict(test)
            hl = vector_to_label(hv)
            digitwriter.writerow([count, hl])
            count += 1