def SimplifiedQbsolv(max_iter=10, max_time=None, convergence=3, energy_threshold=None, max_subproblem_size=30): """Races a Tabu solver and a QPU-based sampler of flip-energy-impact induced subproblems. For arguments description see: :class:`~hybrid.reference.kerberos.Kerberos`. """ energy_reached = None if energy_threshold is not None: energy_reached = lambda en: en <= energy_threshold workflow = hybrid.Loop(hybrid.Race( hybrid.InterruptableTabuSampler(), hybrid.EnergyImpactDecomposer( size=max_subproblem_size, rolling=True, rolling_history=0.15) | hybrid.QPUSubproblemAutoEmbeddingSampler() | hybrid.SplatComposer()) | hybrid.ArgMin() | hybrid.TrackMin(output=True), max_iter=max_iter, max_time=max_time, convergence=convergence, terminate=energy_reached) return workflow
def hybrid_solver(): workflow = hybrid.LoopUntilNoImprovement(hybrid.RacingBranches( hybrid.InterruptableTabuSampler(), hybrid.EnergyImpactDecomposer(size=20) | hybrid.QPUSubproblemAutoEmbeddingSampler() | hybrid.SplatComposer()) | hybrid.ArgMin(), convergence=3) return hybrid.HybridSampler(workflow)
def hybrid_solver(): workflow = hybrid.Loop(hybrid.RacingBranches( hybrid.InterruptableTabuSampler(), hybrid.EnergyImpactDecomposer( size=30, rolling=True, rolling_history=0.75) | hybrid.QPUSubproblemAutoEmbeddingSampler() | hybrid.SplatComposer()) | hybrid.ArgMin(), convergence=1) return hybrid.HybridSampler(workflow)
def test_racing_workflow_with_oracle_subsolver(self): workflow = hybrid.LoopUntilNoImprovement(hybrid.RacingBranches( hybrid.InterruptableTabuSampler(), hybrid.EnergyImpactDecomposer(size=1) | HybridSubproblemRunnable(dimod.ExactSolver()) | hybrid.SplatComposer()) | hybrid.ArgMin(), convergence=3) state = State.from_sample(min_sample(self.bqm), self.bqm) response = workflow.run(state) self.assertIsInstance(response, concurrent.futures.Future) self.assertEqual(response.result().samples.record[0].energy, -3.0)
def test_hybrid(self): import dimod import hybrid bqm = dimod.BinaryQuadraticModel({}, {'ab': 1, 'bc': -1, 'ca': 1}, 0, dimod.SPIN) workflow = hybrid.Loop(hybrid.Race( hybrid.InterruptableTabuSampler(), hybrid.EnergyImpactDecomposer(size=2) | hybrid.SimulatedAnnealingSubproblemSampler() | hybrid.SplatComposer() ) | hybrid.ArgMin(), convergence=3) result = workflow.run(hybrid.State.from_problem(bqm)).result() self.assertEqual(result.samples.first.energy, -3.0)
def test_sampling_parameters_filtering(self): class Sampler(dimod.ExactSolver): """Exact solver that fails if a sampling parameter is provided.""" parameters = {} def sample(self, bqm): return super().sample(bqm) workflow = hybrid.LoopUntilNoImprovement(hybrid.RacingBranches( hybrid.InterruptableTabuSampler(), hybrid.EnergyImpactDecomposer(size=1) | HybridSubproblemRunnable(Sampler()) | hybrid.SplatComposer()) | hybrid.ArgMin(), convergence=3) state = State.from_sample(min_sample(self.bqm), self.bqm) response = workflow.run(state) self.assertIsInstance(response, concurrent.futures.Future) self.assertEqual(response.result().samples.record[0].energy, -3.0)
dwave_sampler = DWaveSampler(solver={'topology__type': topology}) # To use Advantage QPU # dwave_sampler = LeapHybridSampler(dwave_sampler) # sampler = EmbeddingComposite(dwave_sampler) # computation = KerberosSampler().sample_qubo(quboDict, max_iter=10, convergence=3) # computation = LeapHybridSampler().sample_qubo(quboDict[0],) computation = KerberosSampler().sample_qubo( # quboDict,num_reads=num_reads) computation = sampler.sample_qubo(quboDict, label='Test Topology: {0}, # Nodes: {1}, Num_reads: {2}'.format(topology, NUM_NODES, num_reads), num_reads=num_reads) # Define the workflow iteration = hybrid.RacingBranches( hybrid.InterruptableTabuSampler(), hybrid.EnergyImpactDecomposer(size=5) | hybrid.QPUSubproblemAutoEmbeddingSampler() | hybrid.SplatComposer()) | hybrid.ArgMin() workflow = hybrid.LoopUntilNoImprovement(iteration, convergence=20) bqm = quboDict # Solve the problem # init_state = hybrid.State.from_problem(bqm) # final_state = workflow.run(init_state).result() sampler = HybridSampler(workflow) computation = sampler.sample_qubo(quboDict, label='Hybrid Test Topology: {0}, ' 'Nodes: {1}, ' 'Num_reads: {2}'.format( topology, NUM_NODES, num_reads), num_reads=num_reads)
def print_result(sample_set): for sample in sample_set.samples(): list1, list2 = split_numbers_list(numbers, sample) print "list1: {}, sum: {}, list2: {}, sum: {}".format( list1, sum(list1), list2, sum(list2)) dwave_sampler = EmbeddingComposite(DWaveSampler()) print "#" * 80 numbers = generate_numbers( 100) # generate a list of numbers to be split into equal sums bqm = to_bqm(numbers) # Redefine the workflow: a rolling decomposition window decomposer = hybrid.EnergyImpactDecomposer(size=50, rolling_history=0.15) sampler = hybrid.QPUSubproblemAutoEmbeddingSampler() composer = hybrid.SplatComposer() iteration = hybrid.RacingBranches(decomposer | sampler | composer) | hybrid.ArgMin() workflow = hybrid.LoopUntilNoImprovement(iteration, convergence=3) init_state = hybrid.State.from_problem(bqm) start = time.time() final_state = workflow.run(init_state).result() end = time.time() print "Using dwave-hybrid (elapsed time: {}s)".format(end - start) print(final_state.samples)
# Construct a problem #bqm = dimod.BinaryQuadraticModel({}, {'ab': 1, 'bc': -1, 'ca': 1}, 0, dimod.SPIN) with open('bqp1000_01.qubo') as problem: bqm = dimod.BinaryQuadraticModel.from_coo(problem) subproblem_size = 100 print("BQM size: {}, subproblem size: {}".format(len(bqm), subproblem_size)) # Classical solvers #subproblem = hybrid.EnergyImpactDecomposer(size=50, rolling_history=0.15) #subproblem = hybrid.EnergyImpactDecomposer(size=1024, rolling_history=0.15, traversal="bfs") # Parallel subproblem subproblem = hybrid.Unwind( #hybrid.EnergyImpactDecomposer(size=subproblem_size, rolling_history=0.15, traversal="bfs") hybrid.EnergyImpactDecomposer(size=subproblem_size, rolling_history=0.1)) # QPU #subsampler = hybrid.QPUSubproblemAutoEmbeddingSampler() | hybrid.SplatComposer() subsampler = hybrid.Map( hybrid.QPUSubproblemAutoEmbeddingSampler()) | hybrid.Reduce( hybrid.Lambda(merge_substates)) | hybrid.SplatComposer() # Define the workflow # iteration = hybrid.RacingBranches( # hybrid.InterruptableTabuSampler(), # hybrid.EnergyImpactDecomposer(size=2) # | hybrid.QPUSubproblemAutoEmbeddingSampler() # | hybrid.SplatComposer() # ) | hybrid.ArgMin()
H = 0 for i in range(len(arr)): if (i % 10 == 0): #high impact variables H += 1000 * arr[i] * Spin(f'x_{i}') continue H += arr[i] * Spin(f'x_{i}') H *= H print("Compiling...") model = H.compile() bqm = model.to_bqm() print("OK") import hybrid hybrid.logger.setLevel(hybrid.logging.DEBUG) workflow = hybrid.Loop(hybrid.RacingBranches( hybrid.InterruptableSimulatedAnnealingProblemSampler(), hybrid.EnergyImpactDecomposer(size=10, rolling=True, rolling_history=.3) | hybrid.QPUSubproblemAutoEmbeddingSampler(num_reads=2) | hybrid.SplatComposer()) | hybrid.ArgMin(), convergence=3) # not our workflow result = hybrid.KerberosSampler().sample(bqm) hybrid.Unwind(workflow) print("Solution: sample={}".format(result.first)) #hybrid.print_structure(workflow) print("-----------------------") #hybrid.print_counters(workflow)
def sample(self, bqm, init_sample=None, max_iter=100, convergence=3, num_reads=1, sa_reads=1, sa_sweeps=10000, tabu_timeout=500, qpu_reads=100, qpu_sampler=None, qpu_params=None, max_subproblem_size=50, energy_threshold=None): """Run Tabu search, Simulated annealing and QPU subproblem sampling (for high energy impact problem variables) in parallel and return the best samples. Args: bqm (:obj:`~dimod.BinaryQuadraticModel`): Binary quadratic model to be sampled from. init_sample (:class:`~dimod.SampleSet`, callable, ``None``): Initial sample set (or sample generator) used for each "read". Use a random sample for each read by default. max_iter (int): Number of iterations in the hybrid algorithm. convergence (int): Number of iterations with no improvement that terminates sampling. num_reads (int): Number of reads. Each sample is the result of a single run of the hybrid algorithm. sa_reads (int): Number of reads in the simulated annealing branch. sa_sweeps (int): Number of sweeps in the simulated annealing branch. tabu_timeout (int): Timeout for non-interruptable operation of tabu search (time in milliseconds). qpu_reads (int): Number of reads in the QPU branch. qpu_sampler (:class:`dimod.Sampler`, optional, default=DWaveSampler()): Quantum sampler such as a D-Wave system. qpu_params (dict): Dictionary of keyword arguments with values that will be used on every call of the QPU sampler. max_subproblem_size (int): Maximum size of the subproblem selected in the QPU branch. energy_threshold (float, optional): Terminate when this energy threshold is surpassed. Check is performed at the end of each iteration. Returns: :obj:`~dimod.SampleSet`: A `dimod` :obj:`.~dimod.SampleSet` object. """ if callable(init_sample): init_state_gen = lambda: hybrid.State.from_sample( init_sample(), bqm) elif init_sample is None: init_state_gen = lambda: hybrid.State.from_sample( hybrid.random_sample(bqm), bqm) elif isinstance(init_sample, dimod.SampleSet): init_state_gen = lambda: hybrid.State.from_sample(init_sample, bqm) else: raise TypeError( "'init_sample' should be a SampleSet or a SampleSet generator") subproblem_size = min(len(bqm), max_subproblem_size) energy_reached = None if energy_threshold is not None: energy_reached = lambda en: en <= energy_threshold iteration = hybrid.Race( hybrid.Identity(), hybrid.InterruptableTabuSampler(timeout=tabu_timeout), hybrid.InterruptableSimulatedAnnealingProblemSampler( num_reads=sa_reads, num_sweeps=sa_sweeps), hybrid.EnergyImpactDecomposer(size=subproblem_size, rolling=True, rolling_history=0.3, traversal='bfs') | hybrid.QPUSubproblemAutoEmbeddingSampler(num_reads=qpu_reads, qpu_sampler=qpu_sampler, qpu_params=qpu_params) | hybrid.SplatComposer(), ) | hybrid.ArgMin() self.runnable = hybrid.Loop(iteration, max_iter=max_iter, convergence=convergence, terminate=energy_reached) samples = [] energies = [] for _ in range(num_reads): init_state = init_state_gen() final_state = self.runnable.run(init_state) # the best sample from each run is one "read" ss = final_state.result().samples ss.change_vartype(bqm.vartype, inplace=True) samples.append(ss.first.sample) energies.append(ss.first.energy) return dimod.SampleSet.from_samples(samples, vartype=bqm.vartype, energy=energies)
# load a problem problem = sys.argv[1] with open(problem) as fp: bqm = dimod.BinaryQuadraticModel.from_coo(fp) # define a qbsolv-like workflow def merge_substates(_, substates): a, b = substates return a.updated( subsamples=hybrid.hstack_samplesets(a.subsamples, b.subsamples)) subproblems = hybrid.Unwind( hybrid.EnergyImpactDecomposer(size=50, rolling_history=0.15)) qpu = hybrid.Map(hybrid.QPUSubproblemAutoEmbeddingSampler()) | hybrid.Reduce( hybrid.Lambda(merge_substates)) | hybrid.SplatComposer() random = hybrid.Map(hybrid.RandomSubproblemSampler()) | hybrid.Reduce( hybrid.Lambda(merge_substates)) | hybrid.SplatComposer() subsampler = hybrid.Parallel(qpu, random, endomorphic=False) | hybrid.ArgMin() iteration = hybrid.Race(hybrid.InterruptableTabuSampler(), subproblems | subsampler) | hybrid.ArgMin() main = hybrid.Loop(iteration, max_iter=10, convergence=3) # run the workflow
def Kerberos(max_iter=100, max_time=None, convergence=3, energy_threshold=None, sa_reads=1, sa_sweeps=10000, tabu_timeout=500, qpu_reads=100, qpu_sampler=None, qpu_params=None, max_subproblem_size=50): """An opinionated hybrid asynchronous decomposition sampler for problems of arbitrary structure and size. Runs Tabu search, Simulated annealing and QPU subproblem sampling (for high energy impact problem variables) in parallel and returns the best samples. Kerberos workflow is used by :class:`KerberosSampler`. Termination Criteria Args: max_iter (int): Number of iterations in the hybrid algorithm. max_time (float/None, optional, default=None): Wall clock runtime termination criterion. Unlimited by default. convergence (int): Number of iterations with no improvement that terminates sampling. energy_threshold (float, optional): Terminate when this energy threshold is surpassed. Check is performed at the end of each iteration. Simulated Annealing Parameters: sa_reads (int): Number of reads in the simulated annealing branch. sa_sweeps (int): Number of sweeps in the simulated annealing branch. Tabu Search Parameters: tabu_timeout (int): Timeout for non-interruptable operation of tabu search (time in milliseconds). QPU Sampling Parameters: qpu_reads (int): Number of reads in the QPU branch. qpu_sampler (:class:`dimod.Sampler`, optional, default=DWaveSampler()): Quantum sampler such as a D-Wave system. qpu_params (dict): Dictionary of keyword arguments with values that will be used on every call of the QPU sampler. max_subproblem_size (int): Maximum size of the subproblem selected in the QPU branch. Returns: Workflow (:class:`~hybrid.core.Runnable` instance). """ energy_reached = None if energy_threshold is not None: energy_reached = lambda en: en <= energy_threshold iteration = hybrid.Race( hybrid.Identity(), hybrid.InterruptableTabuSampler(timeout=tabu_timeout), hybrid.InterruptableSimulatedAnnealingProblemSampler( num_reads=sa_reads, num_sweeps=sa_sweeps), hybrid.EnergyImpactDecomposer(size=max_subproblem_size, rolling=True, rolling_history=0.3, traversal='bfs') | hybrid.QPUSubproblemAutoEmbeddingSampler(num_reads=qpu_reads, qpu_sampler=qpu_sampler, qpu_params=qpu_params) | hybrid.SplatComposer()) | hybrid.ArgMin() workflow = hybrid.Loop(iteration, max_iter=max_iter, max_time=max_time, convergence=convergence, terminate=energy_reached) return workflow
J = {edge: random.choice([-1, 1]) for edge in graph.edges} bqm = dimod.BQM(h, J, offset=0, vartype=dimod.SPIN) # define a qbsolv-like workflow def merge_substates(_, substates): a, b = substates return a.updated( subsamples=hybrid.hstack_samplesets(a.subsamples, b.subsamples)) # Redefine the workflow: a rolling decomposition window #subproblem = hybrid.EnergyImpactDecomposer(size=50, rolling_history=0.15) subproblem = hybrid.Unwind( hybrid.EnergyImpactDecomposer(size=100, rolling_history=0.15, traversal='bfs')) # QPU #subsampler = hybrid.QPUSubproblemAutoEmbeddingSampler() | hybrid.SplatComposer() qpu_sampler = hybrid.Map( hybrid.QPUSubproblemAutoEmbeddingSampler()) | hybrid.Reduce( hybrid.Lambda(merge_substates)) | hybrid.SplatComposer() rand_sampler = hybrid.Map(hybrid.RandomSubproblemSampler()) | hybrid.Reduce( hybrid.Lambda(merge_substates)) | hybrid.SplatComposer() iteration = hybrid.RacingBranches( hybrid.InterruptableTabuSampler(), subproblem | qpu_sampler) | hybrid.ArgMin() | hybrid.TrackMin(output=True) workflow = hybrid.LoopUntilNoImprovement(iteration, convergence=5)
# load a problem problem = sys.argv[1] with open(problem) as fp: bqm = dimod.BinaryQuadraticModel.from_coo(fp) # define the solver def merge_substates(component, substates): a, b = substates return a.updated( subsamples=hybrid.utils.meld_samplesets(a.subsamples, b.subsamples) ) subproblems = hybrid.Unwind( hybrid.EnergyImpactDecomposer(size=50, silent_rewind=False, rolling_history=0.15) ) qpu = hybrid.Map( hybrid.QPUSubproblemAutoEmbeddingSampler() ) | hybrid.Reduce( hybrid.Lambda(merge_substates) ) | hybrid.SplatComposer() random = hybrid.Map( hybrid.RandomSubproblemSampler() ) | hybrid.Reduce( hybrid.Lambda(merge_substates) ) | hybrid.SplatComposer() subsampler = hybrid.Parallel(qpu, random, endomorphic=False) | hybrid.ArgMin()
# computation = LeapHybridSampler().sample_qubo(quboDict[0],) computation = KerberosSampler().sample_qubo( # quboDict,num_reads=num_reads) computation = sampler.sample_qubo(quboDict, label='Test Topology: {0}, # Nodes: {1}, Num_reads: {2}'.format(topology, NUM_NODES, num_reads), num_reads=num_reads) import time start_time = time.time() # Define the workflow iteration = hybrid.RacingBranches( # Runs (races) multiple workflows of type Runnable in parallel, stopping all once the first # finishes. Returns the results of all, in the specified order. hybrid.InterruptableTabuSampler( ), # Tabu algorithm seek of best solutions hybrid.EnergyImpactDecomposer( size=5 ) # Selects a subproblem of variables maximally contributing to the # problem energy. | hybrid.QPUSubproblemAutoEmbeddingSampler( ) # A quantum sampler for a subproblem with automated heuristic # minor-embedding. | hybrid.SplatComposer( ) # A composer that overwrites current samples with subproblem samples. ) | hybrid.ArgMin() # Selects the best state from a sequence of States workflow = hybrid.LoopUntilNoImprovement( iteration, convergence) # Iterates Runnable for up to max_iter times, # or until a state quality metric, defined by the key function, shows no improvement for at least convergence # number of iterations. # Solve the problem init_state = hybrid.State.from_problem(_QUBOdictionary)
# distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import print_function import sys import dimod import hybrid # load a problem problem = sys.argv[1] with open(problem) as fp: bqm = dimod.BinaryQuadraticModel.from_coo(fp) # define the workflow workflow = hybrid.Loop(hybrid.RacingBranches( hybrid.Identity(), hybrid.InterruptableTabuSampler(), hybrid.EnergyImpactDecomposer(size=50, rolling=True, traversal='bfs') | hybrid.QPUSubproblemAutoEmbeddingSampler() | hybrid.SplatComposer()) | hybrid.ArgMin(), convergence=3) # create a dimod sampler that runs the workflow and sample result = hybrid.HybridSampler(workflow).sample(bqm) # show results print("Solution: sample={.first}".format(result))
def solve(self): self.n_bins_truth = self._data.x.shape[0] self.n_bins_reco = self._data.d.shape[0] if not self._data.R.shape[1] == self.n_bins_truth: raise Exception( "Number of bins at truth level do not match between 1D spectrum (%i) and response matrix (%i)" % (self.n_bins_truth, self._data.R.shape[1])) if not self._data.R.shape[0] == self.n_bins_reco: raise Exception( "Number of bins at reco level do not match between 1D spectrum (%i) and response matrix (%i)" % (self.n_bins_reco, self._data.R.shape[0])) self.convert_to_binary() print("INFO: N bins:", self._data.x.shape[0]) print("INFO: n-bits encoding:", self.rho) print("INFO: Signal truth-level x:") print(self._data.x) print("INFO: pseudo-data b:") print(self._data.d) print("INFO: Response matrix:") print(self._data.R) self.Q = self.make_qubo_matrix() self._bqm = dimod.BinaryQuadraticModel.from_numpy_matrix(self.Q) print("INFO: solving the QUBO model (size=%i)..." % len(self._bqm)) if self.backend in [Backends.cpu]: print("INFO: running on CPU...") self._results = dimod.ExactSolver().sample(self._bqm) self._status = StatusCode.success elif self.backend in [Backends.sim]: num_reads = self.solver_parameters['num_reads'] print("INFO: running on simulated annealer (neal), num_reads=", num_reads) sampler = neal.SimulatedAnnealingSampler() self._results = sampler.sample(self._bqm, num_reads=num_reads).aggregate() self._status = StatusCode.success elif self.backend in [ Backends.qpu, Backends.qpu_hinoise, Backends.qpu_lonoise, Backends.hyb, Backends.qsolv ]: print("INFO: running on QPU") config_file = self.get_config_file() self._hardware_sampler = DWaveSampler(config_file=config_file) print("INFO: QPU configuration file:", config_file) print("INFO: finding optimal minor embedding...") n_bits_avg = np.mean(self._encoder.rho) thr = 4. / float(self.n_bins_truth) n_tries = 5 if n_bits_avg < thr else 10 J = qubo_quadratic_terms_from_np_array(self.Q) embedding = self.find_embedding(J, n_tries) print("INFO: creating DWave sampler...") sampler = FixedEmbeddingComposite(self._hardware_sampler, embedding) if self.backend in [ Backends.qpu, Backends.qpu_hinoise, Backends.qpu_lonoise ]: print("INFO: Running on QPU") params = self.solver_parameters self._results = sampler.sample(self._bqm, **params).aggregate() self._status = StatusCode.success elif self.backend in [Backends.hyb]: print("INFO: hybrid execution") import hybrid num_reads = self.solver_parameters['num_reads'] # Define the workflow # hybrid.EnergyImpactDecomposer(size=len(bqm), rolling_history=0.15) iteration = hybrid.RacingBranches( hybrid.InterruptableTabuSampler(), hybrid.EnergyImpactDecomposer(size=len(self._bqm) // 2, rolling=True) | hybrid.QPUSubproblemAutoEmbeddingSampler( num_reads=num_reads) | hybrid.SplatComposer()) | hybrid.ArgMin() #workflow = hybrid.LoopUntilNoImprovement(iteration, convergence=3) workflow = hybrid.Loop(iteration, max_iter=20, convergence=3) init_state = hybrid.State.from_problem(self._bqm) self._results = workflow.run(init_state).result().samples self._status = StatusCode.success # show execution profile print("INFO: timing:") workflow.timers hybrid.print_structure(workflow) hybrid.profiling.print_counters(workflow) elif self.backend in [Backends.qsolv]: print("INFO: using QBsolve with FixedEmbeddingComposite") self._results = QBSolv().sample_qubo(S, solver=sampler, solver_limit=5) self._status = StatusCode.success else: raise Exception("ERROR: unknown backend", self.backend) print("DEBUG: status =", self._status) return self._status