#run population simulation and collect the data pop.run() pop.collect_data() #object no longer needed del pop ####### Postprocess the simulation output ###################################### #reset seed, but output should be deterministic from now on np.random.seed(SIMULATIONSEED) #do some postprocessing on the collected data, i.e., superposition #of population LFPs, CSDs etc postproc = PostProcess(y = params.y, dt_output = params.dt_output, savefolder = params.savefolder, mapping_Yy = params.mapping_Yy, ) #run through the procedure postproc.run() #create tar-archive with output for plotting postproc.create_tar_archive() #tic toc print 'Execution time: %.3f seconds' % (time() - tic)
####### Postprocess the simulation output ###################################### #reset seed, but output should be deterministic from now on np.random.seed(SIMULATIONSEED) if properrun: #do some postprocessing on the collected data, i.e., superposition #of population LFPs, CSDs etc postproc = PostProcess(y = PS.X, dt_output = PS.dt_output, savefolder = PS.savefolder, mapping_Yy = PS.mapping_Yy, savelist = PS.savelist, cells_subfolder = os.path.split(PS.cells_path)[-1], populations_subfolder = os.path.split(PS.populations_path)[-1], figures_subfolder = os.path.split(PS.figures_path)[-1] ) #run through the procedure postproc.run() #create tar-archive with output for plotting, ssh-ing etc. postproc.create_tar_archive() COMM.Barrier() #tic toc
#object no longer needed del pop ####### Postprocess the simulation output ###################################### #reset seed, but output should be deterministic from now on np.random.seed(SIMULATIONSEED) #do some postprocessing on the collected data, i.e., superposition #of population LFPs, CSDs etc postproc = PostProcess(y = PSET['X'], dt_output = PSET['dt_output'], savefolder = output_path, mapping_Yy = PSET['mapping_Yy'], savelist = PSET['pp_savelist'], cells_subfolder = os.path.split(cell_path)[-1], populations_subfolder = os.path.split(population_path)[-1], figures_subfolder = os.path.split(figure_path)[-1], compound_file = '{}_{}sum.h5'.format('kernel', 'LFP') ) #run through the procedure postproc.run() COMM.Barrier() ## get LFP output and create kernel to be used for LFP predictions if RANK == 0: with h5py.File(os.path.join(output_path, 'kernel_LFPsum.h5'), 'r') as f: lfp = f['data'][()]