示例#1
0
 def test_dam_test(self):
     with torch.cuda.device(0):
         gages_input = GagesModel.load_datamodel(
             self.config_data.data_path["Temp"],
             data_source_file_name='test_data_source.txt',
             stat_file_name='test_Statistics.json',
             flow_file_name='test_flow.npy',
             forcing_file_name='test_forcing.npy',
             attr_file_name='test_attr.npy',
             f_dict_file_name='test_dictFactorize.json',
             var_dict_file_name='test_dictAttribute.json',
             t_s_dict_file_name='test_dictTimeSpace.json')
         pred, obs = master_test(gages_input, epoch=cfg.TEST_EPOCH)
         basin_area = gages_input.data_source.read_attr(
             gages_input.t_s_dict["sites_id"], ['DRAIN_SQKM'],
             is_return_dict=False)
         mean_prep = gages_input.data_source.read_attr(
             gages_input.t_s_dict["sites_id"], ['PPTAVG_BASIN'],
             is_return_dict=False)
         mean_prep = mean_prep / 365 * 10
         pred = _basin_norm(pred, basin_area, mean_prep, to_norm=False)
         obs = _basin_norm(obs, basin_area, mean_prep, to_norm=False)
         save_result(gages_input.data_source.data_config.data_path['Temp'],
                     cfg.TEST_EPOCH, pred, obs)
         plot_we_need(gages_input,
                      obs,
                      pred,
                      id_col="STAID",
                      lon_col="LNG_GAGE",
                      lat_col="LAT_GAGE")
示例#2
0
 def test_test_camels(self):
     data_model = CamelsModel.load_datamodel(
         self.config_data.data_path["Temp"],
         data_source_file_name='test_data_source.txt',
         stat_file_name='test_Statistics.json',
         flow_file_name='test_flow.npy',
         forcing_file_name='test_forcing.npy',
         attr_file_name='test_attr.npy',
         f_dict_file_name='test_dictFactorize.json',
         var_dict_file_name='test_dictAttribute.json',
         t_s_dict_file_name='test_dictTimeSpace.json')
     with torch.cuda.device(2):
         pred, obs = master_test(data_model)
         basin_area = data_model.data_source.read_attr(
             data_model.t_s_dict["sites_id"], ['area_gages2'],
             is_return_dict=False)
         mean_prep = data_model.data_source.read_attr(
             data_model.t_s_dict["sites_id"], ['p_mean'],
             is_return_dict=False)
         pred = _basin_norm(pred, basin_area, mean_prep, to_norm=False)
         obs = _basin_norm(obs, basin_area, mean_prep, to_norm=False)
         plot_we_need(data_model,
                      obs,
                      pred,
                      id_col="id",
                      lon_col="lon",
                      lat_col="lat")
示例#3
0
 def test_test_gages_wo_attr(self):
     config_dir = definitions.CONFIG_DIR
     config_file = os.path.join(config_dir, "susquehanna/config_exp2.ini")
     subdir = r"susquehanna/exp2"
     config_data = GagesConfig.set_subdir(config_file, subdir)
     data_model = GagesModelWoBasinNorm.load_datamodel(
         config_data.data_path["Temp"],
         data_source_file_name='test_data_source.txt',
         stat_file_name='test_Statistics.json',
         flow_file_name='test_flow.npy',
         forcing_file_name='test_forcing.npy',
         attr_file_name='test_attr.npy',
         f_dict_file_name='test_dictFactorize.json',
         var_dict_file_name='test_dictAttribute.json',
         t_s_dict_file_name='test_dictTimeSpace.json')
     with torch.cuda.device(2):
         pred, obs = master_test(data_model, epoch=self.test_epoch)
         save_result(data_model.data_source.data_config.data_path['Temp'],
                     self.test_epoch, pred, obs)
         plot_we_need(data_model,
                      obs,
                      pred,
                      id_col="STAID",
                      lon_col="LNG_GAGE",
                      lat_col="LAT_GAGE")
示例#4
0
 def test_test_gages(self):
     data_model = GagesModel.load_datamodel(self.config_data.data_path["Temp"],
                                            data_source_file_name='test_data_source.txt',
                                            stat_file_name='test_Statistics.json', flow_file_name='test_flow.npy',
                                            forcing_file_name='test_forcing.npy', attr_file_name='test_attr.npy',
                                            f_dict_file_name='test_dictFactorize.json',
                                            var_dict_file_name='test_dictAttribute.json',
                                            t_s_dict_file_name='test_dictTimeSpace.json')
     with torch.cuda.device(1):
         data_models = GagesModel.every_model(data_model)
         obs_lst = []
         pred_lst = []
         for i in range(len(data_models)):
             print("\n", "Testing model", str(i + 1), ":\n")
             pred, obs = master_test(data_models[i])
             basin_area = data_models[i].data_source.read_attr(data_models[i].t_s_dict["sites_id"], ['area_gages2'],
                                                               is_return_dict=False)
             mean_prep = data_models[i].data_source.read_attr(data_models[i].t_s_dict["sites_id"], ['p_mean'],
                                                              is_return_dict=False)
             pred = _basin_norm(pred, basin_area, mean_prep, to_norm=False)
             obs = _basin_norm(obs, basin_area, mean_prep, to_norm=False)
             obs_lst.append(obs.flatten())
             pred_lst.append(pred.flatten())
         preds = np.array(pred_lst)
         obss = np.array(obs_lst)
         plot_we_need(data_model, obss, preds, id_col="id", lon_col="lon", lat_col="lat")
示例#5
0
    def test_data_temp_test_damcls(self):

        with torch.cuda.device(0):
            nid_dir = os.path.join("/".join(self.config_data.data_path["DB"].split("/")[:-1]), "nid", "quickdata")
            gage_main_dam_purpose = unserialize_json(os.path.join(nid_dir, "dam_main_purpose_dict.json"))
            gage_main_dam_purpose_lst = list(gage_main_dam_purpose.values())
            gage_main_dam_purpose_unique = np.unique(gage_main_dam_purpose_lst)
            for i in range(0, gage_main_dam_purpose_unique.size):
                df = GagesModel.load_datamodel(self.config_data.data_path["Temp"], gage_main_dam_purpose_unique[i],
                                               data_source_file_name='test_data_source.txt',
                                               stat_file_name='test_Statistics.json', flow_file_name='test_flow.npy',
                                               forcing_file_name='test_forcing.npy', attr_file_name='test_attr.npy',
                                               f_dict_file_name='test_dictFactorize.json',
                                               var_dict_file_name='test_dictAttribute.json',
                                               t_s_dict_file_name='test_dictTimeSpace.json')
                new_temp_dir = os.path.join(df.data_source.data_config.model_dict["dir"]["Temp"],
                                            gage_main_dam_purpose_unique[i])
                new_out_dir = os.path.join(df.data_source.data_config.model_dict["dir"]["Out"],
                                           gage_main_dam_purpose_unique[i])
                df.update_datamodel_dir(new_temp_dir, new_out_dir)
                pred, obs = master_test(df, epoch=self.test_epoch)
                basin_area = df.data_source.read_attr(df.t_s_dict["sites_id"], ['DRAIN_SQKM'],
                                                      is_return_dict=False)
                mean_prep = df.data_source.read_attr(df.t_s_dict["sites_id"], ['PPTAVG_BASIN'],
                                                     is_return_dict=False)
                mean_prep = mean_prep / 365 * 10
                pred = _basin_norm(pred, basin_area, mean_prep, to_norm=False)
                obs = _basin_norm(obs, basin_area, mean_prep, to_norm=False)
                save_result(new_temp_dir, self.test_epoch, pred, obs)
示例#6
0
    def test_dam_test(self):
        quick_data_dir = os.path.join(self.config_data.data_path["DB"],
                                      "quickdata")
        data_dir = os.path.join(quick_data_dir,
                                "conus-all_90-10_nan-0.0_00-1.0")
        data_model_train = GagesModel.load_datamodel(
            data_dir,
            data_source_file_name='data_source.txt',
            stat_file_name='Statistics.json',
            flow_file_name='flow.npy',
            forcing_file_name='forcing.npy',
            attr_file_name='attr.npy',
            f_dict_file_name='dictFactorize.json',
            var_dict_file_name='dictAttribute.json',
            t_s_dict_file_name='dictTimeSpace.json')
        data_model_test = GagesModel.load_datamodel(
            data_dir,
            data_source_file_name='test_data_source.txt',
            stat_file_name='test_Statistics.json',
            flow_file_name='test_flow.npy',
            forcing_file_name='test_forcing.npy',
            attr_file_name='test_attr.npy',
            f_dict_file_name='test_dictFactorize.json',
            var_dict_file_name='test_dictAttribute.json',
            t_s_dict_file_name='test_dictTimeSpace.json')

        gages_model_train = GagesModel.update_data_model(
            self.config_data, data_model_train)
        gages_model_test = GagesModel.update_data_model(
            self.config_data,
            data_model_test,
            train_stat_dict=gages_model_train.stat_dict)
        nid_dir = os.path.join(
            "/".join(self.config_data.data_path["DB"].split("/")[:-1]), "nid",
            "quickdata")
        nid_input = NidModel.load_nidmodel(
            nid_dir,
            nid_file=self.nid_file,
            nid_source_file_name='nid_source.txt',
            nid_data_file_name='nid_data.shp')
        gage_main_dam_purpose = unserialize_json(
            os.path.join(nid_dir, "dam_main_purpose_dict.json"))
        data_input = GagesDamDataModel(gages_model_test, nid_input, True,
                                       gage_main_dam_purpose)
        gages_input = choose_which_purpose(data_input)
        pred, obs = master_test(gages_input)
        basin_area = gages_input.data_source.read_attr(
            gages_input.t_s_dict["sites_id"], ['DRAIN_SQKM'],
            is_return_dict=False)
        mean_prep = gages_input.data_source.read_attr(
            gages_input.t_s_dict["sites_id"], ['PPTAVG_BASIN'],
            is_return_dict=False)
        mean_prep = mean_prep / 365 * 10
        pred = _basin_norm(pred, basin_area, mean_prep, to_norm=False)
        obs = _basin_norm(obs, basin_area, mean_prep, to_norm=False)
        save_result(gages_input.data_source.data_config.data_path['Temp'],
                    self.test_epoch, pred, obs)
示例#7
0
 def test_explore_test(self):
     models_num = 0
     dirs = os.listdir(self.config_data.data_path["Temp"])
     for dir_temp in dirs:
         if os.path.isdir(
                 os.path.join(self.config_data.data_path["Temp"],
                              dir_temp)):
             models_num += 1
     for count in range(models_num):
         print("\n", "testing model", str(count + 1), ":\n")
         data_model = GagesModel.load_datamodel(
             self.config_data.data_path["Temp"],
             str(count),
             data_source_file_name='test_data_source.txt',
             stat_file_name='test_Statistics.json',
             flow_file_name='test_flow.npy',
             forcing_file_name='test_forcing.npy',
             attr_file_name='test_attr.npy',
             f_dict_file_name='test_dictFactorize.json',
             var_dict_file_name='test_dictAttribute.json',
             t_s_dict_file_name='test_dictTimeSpace.json')
         pred, obs = master_test(data_model)
         pred = pred.reshape(pred.shape[0], pred.shape[1])
         obs = obs.reshape(obs.shape[0], obs.shape[1])
         inds = statError(obs, pred)
         show_me_num = 5
         t_s_dict = data_model.t_s_dict
         sites = np.array(t_s_dict["sites_id"])
         t_range = np.array(t_s_dict["t_final_range"])
         ts_fig = plot_ts_obs_pred(obs, pred, sites, t_range, show_me_num)
         ts_fig.savefig(
             os.path.join(
                 data_model.data_source.data_config.data_path["Out"],
                 "ts_fig.png"))
         # # plot box,使用seaborn库
         keys = ["Bias", "RMSE", "NSE"]
         inds_test = subset_of_dict(inds, keys)
         box_fig = plot_diff_boxes(inds_test)
         box_fig.savefig(
             os.path.join(
                 data_model.data_source.data_config.data_path["Out"],
                 "box_fig.png"))
         # plot map
         sites_df = pd.DataFrame({
             "sites": sites,
             keys[2]: inds_test[keys[2]]
         })
         plot_ind_map(data_model.data_source.all_configs['gage_point_file'],
                      sites_df)
示例#8
0
 def test_test_susquehanna(self):
     t_test = self.config_data.model_dict["data"]["tRangeTest"]
     source_data = SusquehannaSource(self.config_data, t_test)
     # 构建输入数据类对象
     data_model = SusquehannaModel(source_data)
     with torch.cuda.device(1):
         # pred, obs = master_test(data_model)
         pred, obs = master_test(data_model, epoch=self.test_epoch)
         basin_area = data_model.data_attr[:, 0:1]
         mean_prep = data_model.ppt_avg_basin
         pred = _basin_norm(pred, basin_area, mean_prep, to_norm=False)
         obs = _basin_norm(obs, basin_area, mean_prep, to_norm=False)
         save_result(data_model.data_source.data_config.data_path['Temp'],
                     self.test_epoch, pred, obs)
         plot_we_need(data_model,
                      obs,
                      pred,
                      id_col="id",
                      lon_col="lon",
                      lat_col="lat")
示例#9
0
 def test_Susquehanna(self):
     t_test = self.config_data.model_dict["data"]["tRangeTest"]
     source_data = SusquehannaSource(self.config_data, t_test)
     # 构建输入数据类对象
     data_model = SusquehannaModel(source_data)
     with torch.cuda.device(1):
         # pred, obs = master_test(data_model)
         pred, obs = master_test(data_model, epoch=300)
         flow_pred_file = os.path.join(
             data_model.data_source.data_config.data_path['Temp'],
             'flow_pred')
         flow_obs_file = os.path.join(
             data_model.data_source.data_config.data_path['Temp'],
             'flow_obs')
         serialize_numpy(pred, flow_pred_file)
         serialize_numpy(obs, flow_obs_file)
         plot_we_need(data_model,
                      obs,
                      pred,
                      id_col="id",
                      lon_col="lon",
                      lat_col="lat")
示例#10
0
 def test_test_gages4susquehanna(self):
     config_dir = definitions.CONFIG_DIR
     config_file = os.path.join(config_dir, "susquehanna/config_exp4.ini")
     subdir = r"susquehanna/exp4"
     config_data = GagesConfig.set_subdir(config_file, subdir)
     dor = -0.02
     gages_model = GagesModels(config_data,
                               screen_basin_area_huc4=False,
                               DOR=dor)
     save_datamodel(gages_model.data_model_test,
                    data_source_file_name='test_data_source.txt',
                    stat_file_name='test_Statistics.json',
                    flow_file_name='test_flow',
                    forcing_file_name='test_forcing',
                    attr_file_name='test_attr',
                    f_dict_file_name='test_dictFactorize.json',
                    var_dict_file_name='test_dictAttribute.json',
                    t_s_dict_file_name='test_dictTimeSpace.json')
     data_model = gages_model.data_model_test
     with torch.cuda.device(2):
         pred, obs = master_test(data_model, epoch=self.test_epoch)
         basin_area = data_model.data_source.read_attr(
             data_model.t_s_dict["sites_id"], ['DRAIN_SQKM'],
             is_return_dict=False)
         mean_prep = data_model.data_source.read_attr(
             data_model.t_s_dict["sites_id"], ['PPTAVG_BASIN'],
             is_return_dict=False)
         mean_prep = mean_prep / 365 * 10
         pred = _basin_norm(pred, basin_area, mean_prep, to_norm=False)
         obs = _basin_norm(obs, basin_area, mean_prep, to_norm=False)
         save_result(data_model.data_source.data_config.data_path['Temp'],
                     self.test_epoch, pred, obs)
         plot_we_need(data_model,
                      obs,
                      pred,
                      id_col="STAID",
                      lon_col="LNG_GAGE",
                      lat_col="LAT_GAGE")
示例#11
0
 def test_dam_test(self):
     with torch.cuda.device(1):
         quick_data_dir = os.path.join(self.config_data.data_path["DB"],
                                       "quickdata")
         data_dir = os.path.join(quick_data_dir,
                                 "allnonref-dam_95-05_nan-0.1_00-1.0")
         data_model_test = GagesModel.load_datamodel(
             data_dir,
             data_source_file_name='test_data_source.txt',
             stat_file_name='test_Statistics.json',
             flow_file_name='test_flow.npy',
             forcing_file_name='test_forcing.npy',
             attr_file_name='test_attr.npy',
             f_dict_file_name='test_dictFactorize.json',
             var_dict_file_name='test_dictAttribute.json',
             t_s_dict_file_name='test_dictTimeSpace.json')
         gages_input = GagesModel.update_data_model(self.config_data,
                                                    data_model_test)
         pred, obs = master_test(gages_input, epoch=self.test_epoch)
         basin_area = gages_input.data_source.read_attr(
             gages_input.t_s_dict["sites_id"], ['DRAIN_SQKM'],
             is_return_dict=False)
         mean_prep = gages_input.data_source.read_attr(
             gages_input.t_s_dict["sites_id"], ['PPTAVG_BASIN'],
             is_return_dict=False)
         mean_prep = mean_prep / 365 * 10
         pred = _basin_norm(pred, basin_area, mean_prep, to_norm=False)
         obs = _basin_norm(obs, basin_area, mean_prep, to_norm=False)
         save_result(gages_input.data_source.data_config.data_path['Temp'],
                     self.test_epoch, pred, obs)
         plot_we_need(gages_input,
                      obs,
                      pred,
                      id_col="STAID",
                      lon_col="LNG_GAGE",
                      lat_col="LAT_GAGE")