示例#1
0
     data[p['name']] = pd.read_csv(os.path.join(out_path, p['file']),
                                   comment='#')
     data[p['name']].index = range(
         0 + p.get('start_on_seq', 1),
         p.get('start_on_seq', 1) + len(data[p['name']]))
     data[p['name']].rename(columns={
         p['datacolumn']: p['name'],
         p.get('sitecolumn', 'Site'): 'Site_' + p['name']
     },
                            inplace=True)
     columns.append(p['name'])
 site_column_df = pd.DataFrame(
     {
         'Site': [
             '%d%s' % (n, l)
             for n, l in zip(range(1, 1 + len(sets['seq'])), sets['seq'])
         ]
     },
     index=range(1, 1 + len(sets['seq'])))
 result = pd.concat(data.values() + [site_column_df], axis=1)
 # print result
 temp = tempfile.TemporaryFile()
 result.to_csv(temp)
 temp.seek(0)
 plot_prof_on_seq(temp,DNAseq=sets['seq'],\
  graphshow=True,pngfileout=os.path.join(out_path,sets['pngfileout']),title=sets['name'],\
  prof_columns=columns,seq_column="Site",rescale=sets['rescale'],zero_at=sets['zero_at'],\
  ylab=sets.get('ylab',None),
  colorb={'A':'#0b0','T':'#00b','G':'#fff','C':'#fff'},colorf={'A':'#fafafa','T':'#fafafa','G':'#000','C':'#000'},\
  plot_options={'linewidth':1.0,'markersize':8.0,'figsize':(12,3),'fontsize':None,'legendloc':'upper right'})
 temp.close()
示例#2
0
    'gg_601, Top Strand, Experiment B, Cleavage frequency profile along DNA'
}, {
    'file':
    'gg_601_BS_a_fitted_intensities.csv',
    'seq':
    BS_seq,
    'pngfileout':
    'gg_601_BS_a_cl_freq_profile.png',
    'title':
    'gg_601, Bottom Strand, Experiment A, Cleavage frequency profile along DNA'
}, {
    'file':
    'gg_601_BS_b_fitted_intensities.csv',
    'seq':
    BS_seq,
    'pngfileout':
    'gg_601_BS_b_cl_freq_profile.png',
    'title':
    'gg_601, Bottom Strand, Experiment B, Cleavage frequency profile along DNA'
}]

#Common code:
# will iterate through the lanes and plot the profile values along DNA sequence
# For interactive exploration of the plot set graphshow=True
###################################
for s in lane_data:
    plot_prof_on_seq(os.path.join(out_path,s['file']),DNAseq=s['seq'],\
     graphshow=True,pngfileout=os.path.join(out_path,s['pngfileout']),title=s['title'],\
     prof_columns='Intensity',seq_column="Site",\
     colorb={'A':'#0b0','T':'#00b','G':'#fff','C':'#fff'},colorf={'A':'#fafafa','T':'#fafafa','G':'#000','C':'#000'})
示例#3
0
    #by simply stacking columns from files together
    #then provide column names to plotting functions as array
    for p in sets['profiles']:
        data[p['file']] = pd.read_csv(os.path.join(out_path, p['file']),
                                      comment='#')
        data[p['file']].index = range(1, 1 + len(data[p['file']]))
        data[p['file']].rename(columns={
            p['column']: p['name'],
            'Site': 'Site_' + p['name']
        },
                               inplace=True)
        columns.append(p['name'])
    site_column_df = pd.DataFrame(
        {
            'Site': [
                '%d%s' % (n, l)
                for n, l in zip(range(1, 1 + len(sets['seq'])), sets['seq'])
            ]
        },
        index=range(1, 1 + len(sets['seq'])))
    result = pd.concat(data.values() + [site_column_df], axis=1)

    temp = tempfile.TemporaryFile()
    result.to_csv(temp)
    temp.seek(0)
    plot_prof_on_seq(temp,DNAseq=sets['seq'],\
     graphshow=True,pngfileout=os.path.join(out_path,sets['pngfileout']),title=sets['name'],\
     prof_columns=columns,seq_column="Site",normalize='together',zero_at=sets['zero_at'],\
     colorb={'A':'#0b0','T':'#00b','G':'#fff','C':'#fff'},colorf={'A':'#fafafa','T':'#fafafa','G':'#000','C':'#000'})
    temp.close()