def test_zero_dynamics(): 'test a system with zero dynamic (only should process one frame)' ha = HybridAutomaton() # with time and affine variable mode = ha.new_mode('mode') mode.set_dynamics([[0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0]]) # initial set init_lpi = lputil.from_box([(-5, -5), (0, 1), (0, 0), (1, 1)], mode) init_list = [StateSet(init_lpi, mode)] # settings settings = HylaaSettings(math.pi/4, 20*math.pi) settings.stdout = HylaaSettings.STDOUT_VERBOSE settings.plot.plot_mode = PlotSettings.PLOT_NONE core = Core(ha, settings) core.setup(init_list) core.do_step() # pop core.do_step() # propagate and remove assert core.aggdag.get_cur_state() is None, "cur state should be none, since mode dynamics were zero"
def make_init(ha): '''returns list of initial states''' bounds_list = [] dims = list(ha.modes.values())[0].a_csr.shape[0] for dim in range(dims): if dim < 10: lb = 0.0002 ub = 0.00025 elif dim == 25: lb = -0.0001 ub = 0.0001 else: lb = ub = 0 bounds_list.append((lb, ub)) mode = ha.modes['mode'] init_lpi = lputil.from_box(bounds_list, mode) init_list = [StateSet(init_lpi, mode)] return init_list
def make_op_transition(self, t, t_lpi, state, parent_node): 'make an OpTransition object, can return null if lp solving fails' step_in_mode = state.cur_step_in_mode steps_since_start = state.cur_steps_since_start is_concrete = state.is_concrete successor_has_inputs = t.to_mode.b_csr is not None op = OpTransition(step_in_mode, parent_node, None, t, None) succeeded = self.settings.aggstrat.pretransition(t, t_lpi, op) if not succeeded: self.core.print_verbose( f"Warning: aggstrat.pretransition returned None (LP solving failed)" ) op = None else: lputil.add_reset_variables(t_lpi, t.to_mode.mode_id, t.transition_index, \ reset_csr=t.reset_csr, minkowski_csr=t.reset_minkowski_csr, \ minkowski_constraints_csr=t.reset_minkowski_constraints_csr, \ minkowski_constraints_rhs=t.reset_minkowski_constraints_rhs, successor_has_inputs=successor_has_inputs) if not t_lpi.is_feasible(): raise RuntimeError( "cur_state became infeasible after reset was applied") op_list = [op] state = StateSet(t_lpi, t.to_mode, steps_since_start, op_list, is_concrete) op.poststate = state return op
def test_init_outside_invariant(): 'test when initial state is outside of the mode invariant' ha = HybridAutomaton() mode = ha.new_mode('mode') mode.set_dynamics([[0, 0, 1], [0, 0, 1], [0, 0, 0]]) # x' = 1, y' = 1, a' = 0 # x <= 2.5 mode.set_invariant([[1, 0, 0]], [2.5]) # initial set, x = [3, 4] init_lpi = lputil.from_box([(3, 4), (0, 1), (1, 1)], mode) init_list = [StateSet(init_lpi, mode)] # transition to error if x >= 10 error = ha.new_mode('error') trans = ha.new_transition(mode, error) trans.set_guard([[-1., 0, 0],], [-10]) # settings settings = HylaaSettings(1.0, 5.0) settings.stdout = HylaaSettings.STDOUT_VERBOSE try: Core(ha, settings).run(init_list) assert False, "running with initial state outside of invariant did not raise RuntimeError" except RuntimeError: pass
def test_redundant_invariants(): 'test removing of redundant invariants' ha = HybridAutomaton() mode = ha.new_mode('mode') # dynamics: x' = 1, y' = 1, a' = 0 mode.set_dynamics([[0, 0, 1], [0, 0, 1], [0, 0, 0]]) # invariant: x <= 2.5 mode.set_invariant([[1, 0, 0]], [2.5]) # initial set has x0 = [0, 1] init_lpi = lputil.from_box([(0, 1), (0, 1), (1, 1)], mode) init_list = [StateSet(init_lpi, mode)] # settings, step size = 0.1 settings = HylaaSettings(0.1, 5.0) settings.stdout = HylaaSettings.STDOUT_NONE settings.plot.plot_mode = PlotSettings.PLOT_NONE result = Core(ha, settings).run(init_list) # check last cur_state to ensure redundant constraints were not added assert result.last_cur_state.lpi.get_num_rows() == 3 + 2*3 + 1 # 3 for basis matrix, 2*3 for initial constraints
def test_agg_with_reset(): 'test the aggregation of states with a reset' # m1 dynamics: x' == 1, y' == 0, x0: [-3, -2], y0: [0, 1], step: 1.0 # m1 invariant: x + y <= 0 # m1 -> m2 guard: x + y >= 0 and y <= 0.5, reset = [[0, -1, 0], [1, 0, 0]] (x' = -y, y' = x, remove a) # m2 dynamics: x' == 0, y' == 0 # time bound: 4 # expected result: last state is line (not box!) from (0, 0) to (-0.5, -0.5) ha = HybridAutomaton() # mode one: x' = 1, y' = 0, a' = 0 m1 = ha.new_mode('m1') m1.set_dynamics([[0, 0, 1], [0, 0, 0], [0, 0, 0]]) # mode two: x' = 0, y' = 1 m2 = ha.new_mode('m2') m2.set_dynamics([[0, 0], [0, 0]]) # invariant: x + y <= 0 m1.set_invariant([[1, 1, 0]], [0]) # guard: x + y == 0 & y <= 0.5 trans1 = ha.new_transition(m1, m2, 'trans1') trans1.set_guard([[-1, -1, 0], [1, 1, 0], [0, 1, 0]], [0, 0, 0.5]) #trans1.set_reset(np.identity(3)[:2]) trans1.set_reset(np.array([[0, -1, 0], [1, 0, 0]], dtype=float)) # initial set has x0 = [-3, -2], y = [0, 1], a = 1 init_lpi = lputil.from_box([(-3, -2), (0, 1), (1, 1)], m1) init_list = [StateSet(init_lpi, m1)] # settings, step size = 1.0 settings = HylaaSettings(1.0, 4.0) settings.stdout = HylaaSettings.STDOUT_NONE settings.plot.plot_mode = PlotSettings.PLOT_NONE # use agg_box settings.aggstrat.agg_type = Aggregated.AGG_BOX core = Core(ha, settings) result = core.run(init_list) lpi = result.last_cur_state.lpi # 2 basis matrix rows, 4 init constraints rows, 6 rows from guard conditions (2 from each) assert lpi.get_num_rows() == 2 + 4 + 6 verts = result.last_cur_state.verts(core.plotman) assert len(verts) == 3 assert np.allclose(verts[0], verts[-1]) assert pair_almost_in((0, 0), verts) assert pair_almost_in((-0.5, -0.5), verts)
def make_init(ha): 'make the initial states' mode = ha.modes['mode0_right'] init_lpi = lputil.from_box([(0, 1), (0, 1.0), (1.0, 1.0)], mode) init_list = [StateSet(init_lpi, mode)] return init_list
def make_init(ha): '''returns list of initial states''' mode = ha.modes['mode'] init_lpi = lputil.from_box([[0.4, 5.0], [-0.2, 0.5], [-0.2, 0.5]], mode) init_list = [StateSet(init_lpi, mode)] return init_list
def make_init(ha): 'make the initial states' p2 = ha.modes['Far'] init_lpi = lputil.from_box([(-925.0, -875.0), (-425.0, -375.0), (0.0, 0.0), (0.0, 0.0), (0.0, 0.0), (1.0, 1.0)], p2) init_list = [StateSet(init_lpi, p2)] return init_list
def make_init(ha): '''returns list of initial states''' mode = ha.modes['mode'] # init states: x in [-5, -4], y in [0, 1] init_lpi = lputil.from_box([[-6, -5], [0, 1]], mode) init_list = [StateSet(init_lpi, mode)] return init_list
def make_init(ha): 'make the initial states' # initial set has x0 = [-5, -4], y = [0, 1], c = 0, a = 1 mode = ha.modes['m1'] init_lpi = lputil.from_box([(-5, -4), (0, 1), (0, 0), (1, 1)], mode) init_list = [StateSet(init_lpi, mode)] return init_list
def make_init(ha): '''returns list of initial states''' mode = ha.modes['mode'] init_lpi = lputil.from_box([[0.53, 10], [0.2, 0.6], [0.2, 0.6]], mode) # print(init_lpi.get_full_constraints().toarray(), init_lpi.get_rhs(), init_lpi.get_types()) init_list = [StateSet(init_lpi, mode)] return init_list
def test_agg_to_more_vars(): 'test the aggregation of states with a reset to a mode with new variables' ha = HybridAutomaton() # mode one: x' = 1, a' = 0 m1 = ha.new_mode('m1') m1.set_dynamics([[0, 1], [0, 0]]) # mode two: x' = 0, a' = 0, y' == 1 m2 = ha.new_mode('m2') m2.set_dynamics([[0, 0, 0], [0, 0, 0], [0, 1, 0]]) # invariant: x <= 3.0 m1.set_invariant([[1, 0]], [3.0]) # guard: True trans1 = ha.new_transition(m1, m2, 'trans1') trans1.set_guard_true() reset_mat = [[1, 0], [0, 1], [0, 0]] reset_minkowski = [[0], [0], [1]] reset_minkowski_constraints = [[1], [-1]] reset_minkowski_rhs = [3, -3] # y0 == 3 trans1.set_reset(reset_mat, reset_minkowski, reset_minkowski_constraints, reset_minkowski_rhs) # initial set has x0 = [0, 1], a = 1 init_lpi = lputil.from_box([(0, 1), (1, 1)], m1) init_list = [StateSet(init_lpi, m1)] # settings, step size = 1.0 settings = HylaaSettings(1.0, 4.0) settings.stdout = HylaaSettings.STDOUT_DEBUG settings.plot.plot_mode = PlotSettings.PLOT_NONE settings.plot.store_plot_result = True settings.plot.xdim_dir = 0 settings.plot.ydim_dir = {'m1': 1, 'm2': 2} result = Core(ha, settings).run(init_list) polys = [obj[0] for obj in result.plot_data.mode_to_obj_list[0]['m1']] # 4 steps because invariant is allowed to be false for the final step assert 4 <= len(polys) <= 5, "expected invariant to become false after 4/5 steps" assert_verts_is_box(polys[0], [[0, 1], [1, 1]]) assert_verts_is_box(polys[1], [[1, 2], [1, 1]]) assert_verts_is_box(polys[2], [[2, 3], [1, 1]]) assert_verts_is_box(polys[3], [[3, 4], [1, 1]]) polys = [obj[0] for obj in result.plot_data.mode_to_obj_list[0]['m2']] assert_verts_is_box(polys[0], [[1, 4], [3, 3]]) assert_verts_is_box(polys[1], [[1, 4], [4, 4]])
def test_transition(): 'test a discrete transition' ha = HybridAutomaton() # mode one: x' = 1, t' = 1, a' = 0 m1 = ha.new_mode('m1') m1.set_dynamics([[0, 0, 1], [0, 0, 1], [0, 0, 0]]) # mode two: x' = -1, t' = 1, a' = 0 m2 = ha.new_mode('m2') m2.set_dynamics([[0, 0, -1], [0, 0, 1], [0, 0, 0]]) # invariant: t <= 2.5 m1.set_invariant([[0, 1, 0]], [2.5]) # guard: t >= 2.5 trans1 = ha.new_transition(m1, m2, 'trans1') trans1.set_guard([[0, -1, 0]], [-2.5]) # error t >= 4.5 error = ha.new_mode('error') trans2 = ha.new_transition(m2, error, "to_error") trans2.set_guard([[0, -1, 0]], [-4.5]) # initial set has x0 = [0, 1], t = [0, 0.2], a = 1 init_lpi = lputil.from_box([(0, 1), (0, 0.2), (1, 1)], m1) init_list = [StateSet(init_lpi, m1)] # settings, step size = 1.0 settings = HylaaSettings(1.0, 10.0) settings.stdout = HylaaSettings.STDOUT_VERBOSE settings.plot.plot_mode = PlotSettings.PLOT_NONE settings.plot.store_plot_result = True result = Core(ha, settings).run(init_list) ce = result.counterexample assert len(ce) == 2 assert ce[0].mode.name == 'm1' assert ce[0].outgoing_transition.name == 'trans1' assert ce[1].mode.name == 'm2' assert ce[1].outgoing_transition.name == 'to_error' assert ce[1].start[0] + 1e-9 >= 3.0 assert ce[1].end[0] - 1e-9 <= 2.0 polys = [obj[0] for obj in result.plot_data.mode_to_obj_list[0]['m1']] assert len(polys) == 4 polys = [obj[0] for obj in result.plot_data.mode_to_obj_list[0]['m2']] assert len(polys) == 3 assert result.last_cur_state.cur_steps_since_start[0] == 5
def make_init(ha): 'make the initial states' # initial set has every variable as [-0.0001, 0.0001] mode = ha.modes['mode'] dims = mode.a_csr.shape[0] init_box = dims * [[-0.0001, 0.0001]] init_lpi = lputil.from_box(init_box, mode) init_list = [StateSet(init_lpi, mode)] return init_list
def test_init_unsat(): 'initial region unsat with multiple invariant conditions' ha = HybridAutomaton() mode = ha.new_mode('A') mode.set_dynamics(np.identity(2)) mode.set_invariant([[1, 0], [1, 0]], [2, 3]) # x <= 2 and x <= 3 # initial set lpi1 = lputil.from_box([(10, 11), (0, 1)], mode) lpi2 = lputil.from_box([(0, 1), (0, 1)], mode) init_list = [StateSet(lpi1, mode), StateSet(lpi2, mode)] # settings settings = HylaaSettings(1, 5) settings.stdout = HylaaSettings.STDOUT_VERBOSE settings.plot.plot_mode = PlotSettings.PLOT_NONE core = Core(ha, settings) core.run(init_list) # expect no exception during running
def test_multiple_init_states(): 'test with multiple initial states in the same mode (should NOT do aggregation)' ha = HybridAutomaton() # with time and affine variable mode = ha.new_mode('mode') mode.set_dynamics([[0, 0], [0, 0]]) # initial set init_lpi = lputil.from_box([(-5, -4), (0, 1)], mode) init_lpi2 = lputil.from_box([(-5, -5), (2, 3)], mode) init_list = [StateSet(init_lpi, mode), StateSet(init_lpi2, mode)] # settings settings = HylaaSettings(math.pi/4, math.pi) settings.stdout = HylaaSettings.STDOUT_NONE settings.plot.plot_mode = PlotSettings.PLOT_NONE core = Core(ha, settings) core.run(init_list)
def make_init(ha): 'make the initial states' p2 = ha.modes['Far'] box = [[-925.0, -875.0], [-425.0, -375.0], [0.0, 0.0], [0.0, 0.0], [0.0, 0.0], [1.0, 1.0]] # move init y up 300 #box[0][0] += 400 #box[0][1] += 400 init_lpi = lputil.from_box(box, p2) init_list = [StateSet(init_lpi, p2)] return init_list
def test_stateset_bad_init(): 'test constructing a stateset with a basis matrix that is not the identity (should raise error)' # this is from an issue reported by Mojtaba Zarei ha = HybridAutomaton() mode = ha.new_mode('mode') mode.set_dynamics([[0, 1], [-1, 0]]) # initial set init_lpi = lputil.from_box([(-5, -5), (0, 1)], mode) init_list = [StateSet(init_lpi, mode)] # settings settings = HylaaSettings(math.pi/4, math.pi) settings.stdout = HylaaSettings.STDOUT_NONE settings.plot.store_plot_result = True settings.plot.plot_mode = PlotSettings.PLOT_NONE core = Core(ha, settings) result = core.run(init_list) # use last result stateset = result.last_cur_state mode = stateset.mode lpi = stateset.lpi try: init_states = [StateSet(lpi, mode)] settings = HylaaSettings(0.1, 0.1) core = Core(ha, settings) result = core.run(init_states) assert False, "assertion should be raised if init basis matrix is not identity" except RuntimeError: pass
def define_init_states(ha): '''returns a list of StateSet objects''' # Variable ordering: [x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11, t, affine] rv = [] mode = ha.modes['negAngleInit'] #X_0 = {center + alpha * generator, alpha in [-1, 1]} center = [-0.0432, -11, 0, 30, 0, 30, 360, -0.0013, 30, -0.0013, 30, 0, 1] generator = [0.0056, 4.67, 0, 10, 0, 10, 120, 0.0006, 10, 0.0006, 10, 0, 0] lpi = lputil.from_zonotope(center, [generator], mode) rv.append(StateSet(lpi, mode)) return rv
def test_ha(): 'test for the harmonic oscillator example with line initial set (from ARCH 2018 paper)' ha = HybridAutomaton() # with time and affine variable mode = ha.new_mode('mode') mode.set_dynamics([[0, 1, 0, 0], [-1, 0, 0, 0], [0, 0, 0, 1], [0, 0, 0, 0]]) error = ha.new_mode('error') trans1 = ha.new_transition(mode, error) trans1.set_guard([[1., 0, 0, 0], [-1., 0, 0, 0]], [4.0, -4.0]) # initial set init_lpi = lputil.from_box([(-5, -5), (0, 1), (0, 0), (1, 1)], mode) init_list = [StateSet(init_lpi, mode)] # settings settings = HylaaSettings(math.pi/4, 2*math.pi) settings.stdout = HylaaSettings.STDOUT_VERBOSE settings.plot.store_plot_result = True settings.plot.plot_mode = PlotSettings.PLOT_NONE core = Core(ha, settings) result = core.run(init_list) assert result.has_concrete_error ce = result.counterexample[0] # [-5.0, 0.6568542494923828, 0.0, 1.0] -> [4.0, 3.0710678118654737, 2.356194490192345, 1.0] assert ce.mode == mode assert np.allclose(ce.start, np.array([-5, 0.65685, 0, 1], dtype=float)) assert np.allclose(ce.end, np.array([4, 3.07106, 2.35619, 1], dtype=float)) # check the reachable state (should always have x <= 3.5) obj_list = result.plot_data.mode_to_obj_list[0][mode.name] for obj in obj_list: verts = obj[0] for vert in verts: x, _ = vert assert x <= 4.9
def make_init(ha, box): 'make the initial states' mode = ha.modes['move_free'] # px==-0.0165 & py==0.003 & vx==0 & vy==0 & I==0 & affine==1.0 init_lpi = lputil.from_box(box, mode) #init_lpi = lputil.from_box([(-0.02, -0.02), (-0.005, -0.003), (0, 0), (0, 0), (0, 0), (1.0, 1.0)], mode) #start = [-0.02, -0.004213714568273684, 0.0, 0.0, 0.0, 1.0] #tol = 1e-7 #init_lpi = lputil.from_box([(x - tol, x + tol) if i < 2 else (x, x) for i, x in enumerate(start)], mode) init_list = [StateSet(init_lpi, mode)] # why does 0.003-0.005 reach an error with i=30 for roots first but not leaves first? return init_list
def test_unaggregation(): 'test an unaggregated discrete transition' ha = HybridAutomaton() # mode one: x' = 1, t' = 1, a' = 0 m1 = ha.new_mode('m1') m1.set_dynamics([[0, 0, 1], [0, 0, 1], [0, 0, 0]]) # mode two: x' = -1, t' = 1, a' = 0 m2 = ha.new_mode('m2') m2.set_dynamics([[0, 0, -1], [0, 0, 1], [0, 0, 0]]) # invariant: t <= 2.5 m1.set_invariant([[0, 1, 0]], [2.5]) # guard: t >= 0.5 trans1 = ha.new_transition(m1, m2, 'trans1') trans1.set_guard([[0, -1, 0]], [-0.5]) # error x >= 4.5 error = ha.new_mode('error') trans2 = ha.new_transition(m2, error, "to_error") trans2.set_guard([[-1, 0, 0]], [-4.5]) # initial set has x0 = [0, 0.2], t = [0, 0.2], a = 1 init_lpi = lputil.from_box([(0, 0.2), (0, 0.2), (1, 1)], m1) init_list = [StateSet(init_lpi, m1)] # settings, step size = 1.0 settings = HylaaSettings(1.0, 10.0) settings.stdout = HylaaSettings.STDOUT_DEBUG settings.plot.store_plot_result = True settings.plot.plot_mode = PlotSettings.PLOT_NONE settings.aggstrat = aggstrat.Unaggregated() result = Core(ha, settings).run(init_list) # expected no exception # m2 should be reachable polys = [obj[0] for obj in result.plot_data.mode_to_obj_list[0]['m2']] assert len(polys) > 15
def aggregate_chull(agg_list, op_list, print_func): ''' perform template-based aggregation on the passed-in list of states Currently, this can either use box template directions or arnoldi (+box) template directions ''' min_step = min([state.cur_steps_since_start[0] for state in agg_list]) max_step = max([state.cur_steps_since_start[1] for state in agg_list]) step_interval = [min_step, max_step] print_func("Convex hull aggregation time step interval: {}".format(step_interval)) postmode = agg_list[0].mode lpi_list = [state.lpi for state in agg_list] new_lpi = lputil.aggregate_chull(lpi_list, postmode) return StateSet(new_lpi, agg_list[0].mode, step_interval, op_list, is_concrete=False)
def make_init(ha): 'make the initial states' p2 = ha.modes['P2'] box = [(-925.0, -875.0), (-425.0, -375.0), (0.0, 0.0), (0.0, 0.0), (0.0, 0.0), (1.0, 1.0)] init_lpi = lputil.from_box(box, p2) init_list = [StateSet(init_lpi, p2)] #corners = [[(box[0][0], box[0][0]), (box[1][0], box[1][0]), (0, 0), (0, 0), (0, 0), (1, 1)], \ # [(box[0][1], box[0][1]), (box[1][0], box[1][0]), (0, 0), (0, 0), (0, 0), (1, 1)], \ # [(box[0][1], box[0][1]), (box[1][1], box[1][1]), (0, 0), (0, 0), (0, 0), (1, 1)], \ # [(box[0][0], box[0][0]), (box[1][0], box[1][0]), (0, 0), (0, 0), (0, 0), (1, 1)]] #init_list = [StateSet(lputil.from_box(c, p2), p2) for c in corners] return init_list
def test_agg_no_counterexample(): 'test that aggregation to error does not create a counterexample' # m1 dynamics: x' == 1, y' == 0, x0, y0: [0, 1], step: 1.0 # m1 invariant: x <= 3 # m1 -> m2 guard: True # m2 dynamics: x' == 0, y' == 1 # m2 -> error: y >= 3 ha = HybridAutomaton() # mode one: x' = 1, y' = 0, a' = 0 m1 = ha.new_mode('m1') m1.set_dynamics([[0, 0, 1], [0, 0, 0], [0, 0, 0]]) # mode two: x' = 0, y' = 1, a' = 0 m2 = ha.new_mode('m2') m2.set_dynamics([[0, 0, 0], [0, 0, 1], [0, 0, 0]]) # invariant: x <= 3.0 m1.set_invariant([[1, 0, 0]], [3.0]) # guard: True trans1 = ha.new_transition(m1, m2, 'trans1') trans1.set_guard_true() error = ha.new_mode('error') trans2 = ha.new_transition(m2, error, 'trans2') trans2.set_guard([[0, -1, 0]], [-3]) # y >= 3 # initial set has x0 = [0, 1], t = [0, 1], a = 1 init_lpi = lputil.from_box([(0, 1), (0, 1), (1, 1)], m1) init_list = [StateSet(init_lpi, m1)] # settings, step size = 1.0 settings = HylaaSettings(1.0, 10.0) settings.stdout = HylaaSettings.STDOUT_DEBUG settings.plot.plot_mode = PlotSettings.PLOT_NONE result = Core(ha, settings).run(init_list) assert not result.counterexample
def test_over_time_range(): 'test plotting over time with aggergation (time range)' ha = HybridAutomaton() mode_a = ha.new_mode('A') mode_b = ha.new_mode('B') # dynamics: x' = a, a' = 0 mode_a.set_dynamics([[0, 1], [0, 0]]) mode_b.set_dynamics([[0, 1], [0, 0]]) # invariant: x <= 2.5 mode_a.set_invariant([[1, 0]], [2.5]) trans1 = ha.new_transition(mode_a, mode_b, 'first') trans1.set_guard_true() # initial set has x0 = [0, 0] init_lpi = lputil.from_box([(0, 0), (1, 1)], mode_a) init_list = [StateSet(init_lpi, mode_a)] # settings, step size = 1.0 settings = HylaaSettings(1.0, 4.0) settings.stdout = HylaaSettings.STDOUT_DEBUG settings.process_urgent_guards = True settings.plot.plot_mode = PlotSettings.PLOT_NONE settings.plot.store_plot_result = True settings.plot.xdim_dir = None settings.plot.ydim_dir = 0 result = Core(ha, settings).run(init_list) polys = [obj[0] for obj in result.plot_data.mode_to_obj_list[0][mode_b.name]] # expected with aggegregation: [0, 2.5] -> [1, 3.5] -> [2, 4.5] -> [3, 5.5] -> [4, 6.5] # 4 steps because invariant is allowed to be false for the final step assert len(polys) == 5, "expected invariant to become false after 5 steps" for i in range(5): assert_verts_is_box(polys[i], [[i, i + 3.0], [i, i + 3.0]])
def test_plot_over_time(): 'test doing a plot over time' ha = HybridAutomaton() mode = ha.new_mode('mode') mode.set_dynamics([[0, 1], [-1, 0]]) # initial set init_lpi = lputil.from_box([(-5, -4), (0, 1)], mode) init_list = [StateSet(init_lpi, mode)] # settings settings = HylaaSettings(math.pi/4, math.pi) settings.stdout = HylaaSettings.STDOUT_VERBOSE settings.plot.store_plot_result = True settings.plot.plot_mode = PlotSettings.PLOT_NONE settings.plot.ydim_dir = None # y dimension will be time result = Core(ha, settings).run(init_list) assert not result.has_aggregated_error and not result.has_concrete_error # check the reachable state # we would expect at the end that x = [4, 5], t = pi obj_list = result.plot_data.mode_to_obj_list[0][mode.name] for vert in obj_list[0][0]: x, y = vert assert abs(y) < 1e-6, "initial poly time is wrong" assert abs(-5 - x) < 1e-6 or abs(-4 - x) < 1e-6 for vert in obj_list[-1][0]: x, y = vert assert abs(math.pi - y) < 1e-6, "final poly time is wrong" assert abs(5 - x) < 1e-6 or abs(4 - x) < 1e-6
def test_tt_with_invstr(): 'test time-triggered transitions combined with invariant strengthening' ha = HybridAutomaton() # mode one: x' = 1, a' = 0 m1 = ha.new_mode('m1') m1.set_dynamics([[0, 1], [0, 0]]) m1.set_invariant([[1, 0]], [2.0]) # invariant: x <= 2.0 # mode two: x' = 1, a' = 0 m2 = ha.new_mode('m2') m2.set_dynamics([[0, 1], [0, 0]]) m2.set_invariant([[1, 1]], [4.0]) # x + a <= 4.0 # guard: x >= 2.0 trans1 = ha.new_transition(m1, m2, 'trans1') trans1.set_guard([[-1, 0]], [-2.0]) # error x >= 4.0 error = ha.new_mode('error') trans2 = ha.new_transition(m2, error, "to_error") trans2.set_guard([[-1, 0]], [-4.0]) # initial set has x0 = [0, 1] init_lpi = lputil.from_box([(0, 1), (0, 1)], m1) init_list = [StateSet(init_lpi, m1)] # settings, step size = 0.1 settings = HylaaSettings(0.1, 5.0) settings.stdout = HylaaSettings.STDOUT_VERBOSE settings.plot.plot_mode = PlotSettings.PLOT_NONE # run setup() only and check the result core = Core(ha, settings) core.setup(init_list) assert trans1.time_triggered assert not trans2.time_triggered # not time-triggered because invariant of m2 is True
def test_redundant_inv_transition(): 'test removing of redundant invariants with a transition' ha = HybridAutomaton() mode1 = ha.new_mode('mode1') # dynamics: x' = 1, y' = 1, a' = 0 mode1.set_dynamics([[0, 0, 1], [0, 0, 1], [0, 0, 0]]) # invariant: x <= 2.5 mode1.set_invariant([[1, 0, 0]], [2.5]) mode2 = ha.new_mode('mode2') mode2.set_dynamics([[0, 0, 0], [0, 0, 0], [0, 0, 0]]) ha.new_transition(mode1, mode2).set_guard([[-1, 0, 0]], [-2.5]) # x >= 2.5 # initial set has x0 = [0, 1] init_lpi = lputil.from_box([(0, 1), (0, 1), (1, 1)], mode1) init_list = [StateSet(init_lpi, mode1)] # settings, step size = 0.1 settings = HylaaSettings(0.1, 5.0) settings.stdout = HylaaSettings.STDOUT_DEBUG settings.plot.plot_mode = PlotSettings.PLOT_NONE core = Core(ha, settings) core.setup(init_list) for _ in range(20): core.do_step() assert core.result.last_cur_state.lpi.get_num_rows() == 3 + 2*3 + 1 # 3 for basis matrix, 2*3 for init constraints assert len(core.aggdag.waiting_list) > 2 core.plotman.run_to_completion()