示例#1
0
 def __init__(self, gan, config, discriminator=None, generator=None):
     GANComponent.__init__(self, gan, config)
     self.metrics = {}
     self.sample = None
     self.ops = None
     self.discriminator = discriminator
     self.generator = generator
    def before_step(self, step, feed_dict, depth=0):
        if self.gan.steps != 1:
            return

        defn = self.config.encoder.copy()
        klass = GANComponent.lookup_function(None, defn['class'])
        encode = klass(self.gan, defn).cuda()
        defn = self.config.optimizer.copy()
        klass = GANComponent.lookup_function(None, defn['class'])
        del defn["class"]
        self.optimizer = klass(
            list(encode.parameters()) + list(self.gan.generator.parameters()),
            **defn)

        for i in range(self.config.steps or 1000):
            self.optimizer.zero_grad()
            inp = self.gan.inputs.next()
            e = encode(inp)
            fake = self.gan.generator(e)

            loss = ((inp - fake)**2).mean()
            loss.backward()
            for p in (list(self.gan.g_parameters()) +
                      list(encode.parameters())):
                p.requires_grad = True
            #move = torch_grad(outputs=loss, inputs=list(self.gan.g_parameters())+list(encode.parameters()), retain_graph=True, create_graph=True)
            #print(list(self.gan.g_parameters())+list(encode.parameters()))
            self.optimizer.step()
            if self.config.verbose:
                print("[autoencode]", i, "loss", loss.item())
            if self.config.info and (i % 100) == 0:
                print("[autoencode]", i, "loss", loss.item())
示例#3
0
    def __init__(self,
                 config=None,
                 inputs=None,
                 device='/gpu:0',
                 ops_config=None,
                 ops_backend=TensorflowOps,
                 batch_size=None,
                 width=None,
                 height=None,
                 channels=None):
        """ Initialized a new GAN."""
        self.inputs = inputs
        self.device = device
        self.ops_backend = ops_backend
        self.ops_config = ops_config
        self.created = False
        self.components = []
        self._batch_size = batch_size
        self._width = width
        self._height = height
        self._channels = channels

        if config == None:
            config = hg.Configuration.default()

        # A GAN as a component has a parent of itself
        # gan.gan.gan.gan.gan.gan
        GANComponent.__init__(self, self, config)
示例#4
0
 def __init__(self, gan, config, d_vars=None, g_vars=None, loss=None):
     GANComponent.__init__(self, gan, config)
     self.create_called = False
     self.current_step = 0
     self.g_vars = g_vars
     self.d_vars = d_vars
     self.loss = loss
示例#5
0
    def __init__(self,
                 gan,
                 config,
                 d_vars=None,
                 g_vars=None,
                 loss=None,
                 name="BaseTrainer"):
        self.current_step = 0
        self.g_vars = g_vars
        self.d_vars = d_vars
        self.loss = loss
        self.d_shake = None
        self.g_shake = None
        self.train_hooks = []
        for hook_config in (config.hooks or []):
            hook_config = hc.lookup_functions(hook_config.copy())
            defn = {
                k: v
                for k, v in hook_config.items()
                if k in inspect.getargspec(hook_config['class']).args
            }
            defn['gan'] = gan
            defn['config'] = hook_config
            defn['trainer'] = self
            hook = hook_config["class"](**defn)
            losses = hook.losses()
            if losses[0] is not None:
                self.loss.sample[0] += losses[0]
            if losses[1] is not None:
                self.loss.sample[1] += losses[1]
            self.train_hooks.append(hook)

        GANComponent.__init__(self, gan, config, name=name)
示例#6
0
 def __init__(self, gan, config, d_vars=None, g_vars=None, name="BaseTrainer"):
     self.current_step = 0
     self.g_vars = g_vars
     self.d_vars = d_vars
     self.train_hooks = []
     
     GANComponent.__init__(self, gan, config, name=name)
示例#7
0
    def __init__(self,
                 config=None,
                 inputs=None,
                 device='/gpu:0',
                 ops_config=None,
                 ops_backend=TensorflowOps,
                 graph=None,
                 batch_size=None,
                 width=None,
                 height=None,
                 channels=None,
                 debug=None,
                 session=None,
                 name="hypergan"):
        """ Initialized a new GAN."""
        self.inputs = inputs
        self.device = device
        self.ops_backend = ops_backend
        self.ops_config = ops_config
        self.components = []
        self._batch_size = batch_size
        self._width = width
        self._height = height
        self._channels = channels
        self.debug = debug
        self.name = name
        self.session = session
        self.skip_connections = SkipConnections()
        self.destroy = False
        if graph is None:
            graph = tf.get_default_graph()
        self.graph = graph

        if config == None:
            config = hg.Configuration.default()

        if debug and not isinstance(self.session,
                                    tf_debug.LocalCLIDebugWrapperSession):
            self.session = tf_debug.LocalCLIDebugWrapperSession(self.session)
            self.session.add_tensor_filter("has_inf_or_nan",
                                           tf_debug.has_inf_or_nan)
        else:
            tfconfig = tf.ConfigProto(allow_soft_placement=True)
            #tfconfig = tf.ConfigProto(log_device_placement=True)
            tfconfig.gpu_options.allow_growth = True

            with tf.device(self.device):
                self.session = self.session or tf.Session(config=tfconfig,
                                                          graph=graph)

        self.global_step = tf.Variable(0, trainable=False, name='global_step')
        self.steps = tf.Variable(0, trainable=False, name='global_step')
        self.increment_step = tf.assign(self.steps, self.steps + 1)
        # A GAN as a component has a parent of itself
        # gan.gan.gan.gan.gan.gan
        GANComponent.__init__(self, self, config, name=self.name)
        self.ops.debug = debug
示例#8
0
    def __init__(self,
                 gan,
                 config,
                 name="BaseGenerator",
                 input=None,
                 reuse=False):
        self.input = input
        self.name = name

        GANComponent.__init__(self, gan, config, name=name, reuse=reuse)
 def __init__(self,
              gan,
              config,
              name=None,
              input=None,
              reuse=None,
              features=None):
     self.input = input
     self.name = name
     self.features = features
     GANComponent.__init__(self, gan, config, name=name, reuse=reuse)
示例#10
0
 def __init__(self, gan, config, discriminator=None, generator=None, x=None, split=2, d_fake=None, d_real=None, reuse=False, name="BaseLoss"):
     self.sample = None
     self.ops = None
     self.reuse=reuse
     self.x = x
     self.d_fake = d_fake
     self.d_real = d_real
     self.discriminator = discriminator or gan.discriminator
     self.generator = generator
     self.split = split
     GANComponent.__init__(self, gan, config, name=name)
示例#11
0
    def __init__(self,
                 gan,
                 config,
                 d_vars=None,
                 g_vars=None,
                 name="BaseTrainer"):
        self.current_step = 0
        self.g_vars = g_vars
        self.d_vars = d_vars
        self.train_hooks = []

        GANComponent.__init__(self, gan, config, name=name)
示例#12
0
 def __init__(self,
              gan,
              config,
              name=None,
              input=None,
              reuse=None,
              features=None,
              weights=None,
              biases=None):
     GANComponent.__init__(self, gan, config)
     self.input = input
     self.name = name
     self.features = features
示例#13
0
 def __init__(self,
              gan,
              config,
              name=None,
              input=None,
              reuse=None,
              x=None,
              g=None):
     self.input = input
     self.name = name
     self.x = x
     self.g = g
     GANComponent.__init__(self, gan, config, name=name, reuse=reuse)
    def before_step(self, step, feed_dict, depth=0):
        defn = self.config.optimizer.copy()
        klass = GANComponent.lookup_function(None, defn['class'])
        del defn["class"]
        self.optimizer = klass(self.gan.generator.parameters(), **defn)

        for i in range(self.config.steps or 1):
            self.optimizer.zero_grad()
            fake = self.gan.discriminator(self.gan.generator(self.gan.latent.instance)).mean()
            real = self.gan.discriminator(self.gan.inputs.sample).mean()
            loss = self.gan.loss.forward_adversarial_norm(real, fake)
            if loss == 0.0:
                if self.config.verbose:
                    print("[match support] No loss")
                break
            move = torch_grad(outputs=loss, inputs=self.gan.g_parameters(), retain_graph=True, create_graph=True)

            if self.config.regularize:
                move = torch_grad(outputs=(loss+sum([m.abs().sum() for m in move])), inputs=self.gan.g_parameters(), retain_graph=True, create_graph=True)
            for p, g in zip(self.gan.g_parameters(), move):
                if p._grad is not None:
                    p._grad.copy_(g)
                else:
                    pass
                    #print("Missing g")
            self.optimizer.step()
            if self.config.verbose:
                print("[match support]", i, "loss", loss.item())
            if self.config.loss_threshold and loss < self.config.loss_threshold:
                if self.config.info:
                    print("[match support] loss_threshold steps", i, "loss", loss.item())
                break
        if self.config.info and i == self.config.steps-1:
            print("[match support] loss_threshold steps", i, "loss", loss.item())
示例#15
0
    def create_optimizer(self, name="optimizer"):
        defn = getattr(self.config, name) or self.config.optimizer
        defn = defn.copy()
        klass = GANComponent.lookup_function(None, defn['class'])
        del defn["class"]

        optimizer = self.trainable_gan.create_optimizer(klass, defn)
        return optimizer
示例#16
0
 def __init__(self, gan, config):
     BaseDistribution.__init__(self, gan, config)
     klass = GANComponent.lookup_function(None, self.config['source'])
     self.source = klass(gan, config)
     self.current_channels = config["z"]
     self.current_width = 1
     self.current_height = 1
     self.current_input_size = config["z"]
     self.z = self.source.z
    def next(self):
        sample = self.source.next()
        if self.z_var is None:
            self.z_var = Variable(sample, requires_grad=True).cuda()
        defn = self.config.optimizer.copy()
        klass = GANComponent.lookup_function(None, defn['class'])
        del defn["class"]
        self.optimizer = klass([self.z_var], **defn)
        z = self.z_var
        z.data.copy_(sample)

        z.grad = torch.zeros_like(z)
        for i in range(self.config.steps or 1):
            self.optimizer.zero_grad()
            fake = self.gan.discriminator(self.gan.generator(
                self.hardtanh(z))).mean()
            real = self.gan.discriminator(self.gan.inputs.sample).mean()
            loss = self.gan.loss.forward_adversarial_norm(real, fake)
            if loss == 0.0:
                if self.config.verbose:
                    print("[optimize distribution] No loss")
                break
            z_move = torch_grad(outputs=loss,
                                inputs=z,
                                retain_graph=True,
                                create_graph=True)
            z_change = z_move[0].abs().mean()
            if self.config.z_change_threshold or self.config.verbose:
                if i == 0:
                    first_z_change = z_change
            z._grad.copy_(z_move[0])
            self.optimizer.step()
            if self.config.verbose:
                print("[optimize distribution]", i, "loss", loss.item(),
                      "mean movement", (z - sample).abs().mean().item(),
                      (z_change / first_z_change).item())
            if self.config.z_change_threshold and z_change / first_z_change < self.config.z_change_threshold:
                if self.config.info:
                    print("[optimize distribution] z_change_threshold steps",
                          i, "loss", loss.item(), "mean movement",
                          (z - sample).abs().mean().item(),
                          (z_change / first_z_change).item())
                break
            if self.config.loss_threshold and loss < self.config.loss_threshold:
                if self.config.info:
                    print("[optimize distribution] loss_threshold steps", i,
                          "loss", loss.item(), "mean movement",
                          (z - sample).abs().mean().item(),
                          (z_change / first_z_change).item())
                break

        if self.config.info and i == self.config.steps - 1:
            print("[optimize distribution] steps_threshold steps", i, "loss",
                  loss.item(), "mean movement",
                  (z - sample).abs().mean().item())
        self.instance = z
        return z
示例#18
0
    def __init__(self, config=None, inputs=None, device='/gpu:0', ops_config=None, ops_backend=TensorflowOps, graph=None,
            batch_size=None, width=None, height=None, channels=None, debug=None, session=None, name="hypergan"):
        """ Initialized a new GAN."""
        self.inputs = inputs
        self.device = device
        self.ops_backend = ops_backend
        self.ops_config = ops_config
        self.components = []
        self._batch_size = batch_size
        self._width = width
        self._height = height
        self._channels = channels
        self.debug = debug
        self.name = name
        self.session = session
        self.skip_connections = SkipConnections()
        self.destroy = False
        if graph is None:
            graph = tf.get_default_graph()
        self.graph = graph

        if config == None:
            config = hg.Configuration.default()

        if debug and not isinstance(self.session, tf_debug.LocalCLIDebugWrapperSession):
            self.session = tf_debug.LocalCLIDebugWrapperSession(self.session)
            self.session.add_tensor_filter("has_inf_or_nan", tf_debug.has_inf_or_nan)
        else:
            tfconfig = tf.ConfigProto(allow_soft_placement=True)
            #tfconfig = tf.ConfigProto(log_device_placement=True)
            tfconfig.gpu_options.allow_growth=True

            with tf.device(self.device):
                self.session = self.session or tf.Session(config=tfconfig, graph=graph)

        self.global_step = tf.Variable(0, trainable=False, name='global_step')
        self.steps = tf.Variable(0, trainable=False, name='global_step')
        self.increment_step = tf.assign(self.steps, self.steps+1)
        # A GAN as a component has a parent of itself
        # gan.gan.gan.gan.gan.gan
        GANComponent.__init__(self, self, config, name=self.name)
        self.ops.debug = debug
示例#19
0
 def __init__(self,
              gan,
              config,
              discriminator=None,
              generator=None,
              x=None,
              split=2,
              d_fake=None,
              d_real=None,
              reuse=False,
              name="BaseLoss"):
     self.sample = None
     self.ops = None
     self.reuse = reuse
     self.x = x
     self.d_fake = d_fake
     self.d_real = d_real
     self.discriminator = discriminator
     self.generator = generator
     self.split = split
     GANComponent.__init__(self, gan, config, name=name)
 def __init__(self, gan, config):
     BaseDistribution.__init__(self, gan, config)
     klass = GANComponent.lookup_function(None,
                                          self.config['source']['class'])
     self.source = klass(gan, config['source'])
     self.current_channels = config['source']["z"]
     self.current_width = 1
     self.current_height = 1
     self.current_input_size = config['source']["z"]
     self.z = self.source.z
     self.hardtanh = torch.nn.Hardtanh()
     self.relu = torch.nn.ReLU()
     self.z_var = None
示例#21
0
    def test_relation_layer(self):
        component = GANComponent(gan=gan, config={'test': True})
        with self.test_session():
            constant = tf.zeros([1, 2, 2, 1])
            split = component.split_by_width_height(constant)
            self.assertEqual(len(split), 4)
            permute = component.permute(split, 2)
            self.assertEqual(len(permute), 12)
            rel_layer = component.relation_layer(constant)
            self.assertEqual(gan.ops.shape(rel_layer), [1, 2, 2, 1])

            constant = tf.zeros([1, 4, 4, 1])
            split = component.split_by_width_height(constant)
            self.assertEqual(len(split), 16)
            permute = component.permute(split, 2)
            self.assertEqual(len(permute), 240)
            rel_layer = component.relation_layer(constant)
            self.assertEqual(gan.ops.shape(rel_layer), [1, 4, 4, 1])
示例#22
0
 def __init__(self, gan, config, input=None):
     GANComponent.__init__(self, gan, config)
     self.input = input
示例#23
0
 def test_missing_gan(self):
     with self.assertRaises(ValidationException):
         GANComponent(config={}, gan=None)
 def __init__(self, gan, config, name=None, input=None, reuse=None, features=None):
     self.input = input
     self.name = name
     self.features = features
     GANComponent.__init__(self, gan, config, name=name, reuse=reuse)
示例#25
0
 def test_proxy_methods(self):
     component = GANComponent(gan=gan, config={'test': True})
     with self.test_session():
         self.assertEqual(component.weights(), [])
         self.assertEqual(component.biases(), [])
         self.assertEqual(component.variables(), [])
示例#26
0
import tensorflow as tf
import hyperchamber as hc
import numpy as np
from hypergan.gan_component import ValidationException
from hypergan.ops import TensorflowOps
from hypergan.gan_component import GANComponent
from hypergan.multi_component import MultiComponent
import hypergan as hg

from unittest.mock import MagicMock

gan = hg.GAN()
component = GANComponent(gan=gan, config={'test': True})


class GanComponentTest(tf.test.TestCase):
    def test_config(self):
        with self.test_session():
            self.assertEqual(component.config.test, True)

    def test_validate(self):
        with self.test_session():
            self.assertEqual(component.validate(), [])

    def test_gan(self):
        with self.test_session():
            self.assertEqual(component.gan, gan)

    def test_ops(self):
        with self.test_session():
            self.assertEqual(type(component.ops), TensorflowOps)
示例#27
0
def create_input(input_config):
    klass = GANComponent.lookup_function(None, input_config['class'])
    return klass(input_config)
示例#28
0
    def __init__(self, gan, config, trainable_gan):
        self.current_step = 0
        self.train_hooks = gan.hooks
        self.trainable_gan = trainable_gan

        GANComponent.__init__(self, gan, config)
示例#29
0
    def __init__(self, gan, config, name="BaseGenerator", input=None, reuse=False):
        self.input = input
        self.name = name

        GANComponent.__init__(self, gan, config, name=name, reuse=reuse)
示例#30
0
文件: common.py 项目: VTNSCC/HyperGAN
    def __init__(self, gan, config, g=None, x=None, name=None, input=None, reuse=None, features=[], skip_connections=[]):
        self.x = x
        self.g = g

        GANComponent.__init__(self, gan, config, name=name, reuse=reuse)
示例#31
0
文件: cli.py 项目: limberc/HyperGAN
 def create_input(self, blank=False, rank=None):
     klass = GANComponent.lookup_function(None, self.input_config['class'])
     self.input_config["blank"]=blank
     self.input_config["rank"]=rank
     return klass(self.input_config)