import pymongo as pm from hyperopt.genson_helpers import (null, false, true, choice, uniform, gaussian, lognormal, qlognormal, ref) from thoreano.slm import (TheanoExtractedFeatures, use_memmap) from thoreano.classifier import (evaluate_classifier_normalize, train_asgd_classifier_normalize) import comparisons as comp_module DEFAULT_COMPARISONS = ['mult', 'sqrtabsdiff'] ############ ######params lnorm = { 'kwargs': { 'inker_shape': choice([(3, 3), (5, 5), (7, 7), (9, 9)]), 'outker_shape': ref('this', 'inker_shape'), 'remove_mean': choice([0, 1]), 'stretch': uniform(0, 10), 'threshold': choice([null, uniform(0, 10)]) } } lpool = { 'kwargs': { 'ker_shape': choice([(3, 3), (5, 5), (7, 7), (9, 9)]), 'order': choice([1, 2, 10]) } } rescale = {'kwargs': {'stride': 2}}
lognormal, qlognormal, ref) from thoreano.slm import (TheanoExtractedFeatures, use_memmap) from thoreano.classifier import (evaluate_classifier_normalize, train_asgd_classifier_normalize) import comparisons as comp_module DEFAULT_COMPARISONS = ['mult', 'sqrtabsdiff'] ############ ######params lnorm = {'kwargs':{'inker_shape' : choice([(3,3),(5,5),(7,7),(9,9)]), 'outker_shape' : ref('this','inker_shape'), 'remove_mean' : choice([0,1]), 'stretch' : uniform(0,10), 'threshold' : choice([null, uniform(0,10)]) }} lpool = {'kwargs': {'ker_shape' : choice([(3,3),(5,5),(7,7),(9,9)]), 'order' : choice([1, 2, 10]) }} rescale = {'kwargs': {'stride' : 2}} activ = {'kwargs': {'min_out' : choice([null, 0]), 'max_out' : choice([1, null])}}
import copy import itertools from hyperopt.genson_helpers import null, false, true, choice, uniform, gaussian, lognormal, qlognormal, ref lnorm = { "kwargs": { "inker_shape": choice([(3, 3), (5, 5), (7, 7), (9, 9)]), "outker_shape": ref("this", "inker_shape"), "remove_mean": choice([0, 1]), "stretch": uniform(0, 10), "threshold": choice([null, uniform(0, 10)]), } } lpool = {"kwargs": {"ker_shape": choice([(3, 3), (5, 5), (7, 7), (9, 9)]), "order": choice([1, 2, 10])}} rescale = {"kwargs": {"stride": 2}} activ = {"kwargs": {"min_out": choice([null, 0]), "max_out": choice([1, null])}} filter1 = dict( initialize=dict( filter_shape=choice([(3, 3), (5, 5), (7, 7), (9, 9)]), n_filters=choice([16, 32, 64]), generate=("random:uniform", {"rseed": choice(range(5))}), ), kwargs={}, ) filter2 = copy.deepcopy(filter1)
import copy import itertools from hyperopt.genson_helpers import (null, false, true, choice, uniform, gaussian, lognormal, qlognormal, ref) lnorm = { 'kwargs': { 'inker_shape': choice([(3, 3), (5, 5), (7, 7), (9, 9)]), 'outker_shape': ref('this', 'inker_shape'), 'remove_mean': choice([0, 1]), 'stretch': uniform(0, 10), 'threshold': choice([null, uniform(0, 10)]) } } lpool = { 'kwargs': { 'ker_shape': choice([(3, 3), (5, 5), (7, 7), (9, 9)]), 'order': choice([1, 2, 10]) } } rescale = {'kwargs': {'stride': 2}} activ = { 'kwargs': { 'min_out': choice([null, 0]), 'max_out': choice([1, null]) } }