def test_environment_init_metrics(metrics, expected): env = Environment(**dict( default_env_params, **dict(metrics_params=dict( metrics_map=metrics, in_fold="all", oof="all", holdout="all")), )) assert env == expected
def env_fixture_1(): return Environment( train_dataset=get_toy_classification_data(), results_path=None, metrics=["roc_auc_score"], cv_type="StratifiedKFold", cv_params=dict(n_splits=5, shuffle=True, random_state=32), )
def test_environment_init_cross_experiment_params(runs, cv_type, _cv_params, expected): env = Environment( **dict( default_env_params, **dict(runs=runs, cross_validation_type=cv_type, cross_validation_params=_cv_params), ) ) assert env == expected
def env_fixture_0(): return Environment( train_dataset=get_toy_classification_data(), results_path= "hyperparameter_hunter/__TEST__HyperparameterHunterAssets__", metrics=["roc_auc_score"], cv_type="StratifiedKFold", cv_params=dict(n_splits=5, shuffle=True, random_state=32), )
def test_environment_repr(env_params): """Test that :meth:`Environment.__repr__` returns the expected value""" env = Environment(**env_params) assert env.__repr__( ) == f"Environment(cross_experiment_key={env.cross_experiment_key!s})"
def test_environment_init_cv_params(_cv_params, expected): env = Environment( **dict(default_env_params, **dict(cross_validation_params=_cv_params))) assert env == expected