示例#1
0
def test_function():
    g = SkewNormal()
    g.A.value = 2.5
    g.x0.value = 0
    g.scale.value = 1
    g.shape.value = 0
    assert_allclose(g.function(0), 1, rtol=3e-3)
    assert_allclose(g.function(6), 1.52e-8, rtol=1e-3)
    g.A.value = 5
    g.x0.value = 4
    g.scale.value = 3
    g.shape.value = 2
    assert_allclose(g.function(0), 6.28e-3, rtol=1e-3)
    assert_allclose(g.function(g.mean), 2.855, rtol=1e-3)
示例#2
0
def test_estimate_parameters_binned(only_current, binned, lazy, uniform):
    s = Signal1D(np.empty((300,)))
    s.axes_manager.signal_axes[0].is_binned = binned
    axis = s.axes_manager.signal_axes[0]
    axis.scale = 0.2
    axis.offset = -10
    g1 = SkewNormal(A=2, x0=2, scale=10, shape=5)
    s.data = g1.function(axis.axis)
    if not uniform:
        axis.convert_to_non_uniform_axis()
    if lazy:
        s = s.as_lazy()
    g2 = SkewNormal()
    if binned and uniform:
        factor = axis.scale
    elif binned:
        factor = np.gradient(axis.axis)
    else:
        factor = 1
    assert g2.estimate_parameters(s, axis.low_value, axis.high_value,
                                  only_current=only_current)
    assert g2._axes_manager[-1].is_binned == binned
    np.testing.assert_allclose(g1.A.value, g2.A.value * factor)
    assert abs(g2.x0.value - g1.x0.value) <= 0.002
    assert abs(g2.shape.value - g1.shape.value) <= 0.01
    assert abs(g2.scale.value - g1.scale.value) <= 0.01
示例#3
0
def test_function_nd(binned, lazy):
    s = Signal1D(np.empty((300,)))
    axis = s.axes_manager.signal_axes[0]
    axis.scale = 0.2
    axis.offset = -10
    g1 = SkewNormal(A=2, x0=2, scale=10, shape=5)
    s.data = g1.function(axis.axis)
    s.metadata.Signal.binned = binned
    s2 = stack([s] * 2)
    if lazy:
        s2 = s2.as_lazy()
    g2 = SkewNormal()
    factor = axis.scale if binned else 1
    assert g2.estimate_parameters(s2, axis.low_value, axis.high_value, False)
    assert g2.binned == binned
    assert_allclose(g2.function_nd(axis.axis) * factor, s2.data, 0.06)
示例#4
0
def test_estimate_parameters_binned(only_current, binned, lazy):
    s = Signal1D(np.empty((300,)))
    s.metadata.Signal.binned = binned
    axis = s.axes_manager.signal_axes[0]
    axis.scale = 0.2
    axis.offset = -10
    g1 = SkewNormal(A=2, x0=2, scale=10, shape=5)
    s.data = g1.function(axis.axis)
    if lazy:
        s = s.as_lazy()
    g2 = SkewNormal()
    factor = axis.scale if binned else 1
    assert g2.estimate_parameters(s, axis.low_value, axis.high_value,
                                  only_current=only_current)
    assert g2.binned == binned
    assert_allclose(g1.A.value, g2.A.value * factor)
    assert abs(g2.x0.value - g1.x0.value) <= 0.002
    assert abs(g2.shape.value - g1.shape.value) <= 0.01
    assert abs(g2.scale.value - g1.scale.value) <= 0.01
示例#5
0
def test_fit(A=1, x0=0, shape=1, scale=1, noise=0.01):
    """
    Creates a simulated noisy skew normal distribution based on the input
    parameters and fits a skew normal component to this data.
    """
    # create skew normal signal and add noise
    g = SkewNormal(A=A, x0=x0, scale=scale, shape=shape)
    x = np.arange(x0 - scale * 3, x0 + scale * 3, step=0.01 * scale)
    s = Signal1D(g.function(x))
    s.axes_manager.signal_axes[0].axis = x
    s.add_gaussian_noise(std=noise * A)
    # fit skew normal component to signal
    g2 = SkewNormal()
    m = s.create_model()
    m.append(g2)
    g2.x0.bmin = x0 - scale * 3  # prevent parameters to run away
    g2.x0.bmax = x0 + scale * 3
    g2.x0.bounded = True
    m.fit(bounded=True)
    m.print_current_values()  # print out parameter values
    m.plot()  # plot fit
    return m