示例#1
0
def process_arguments_to_given(wrapped_test, arguments, kwargs,
                               generator_arguments, generator_kwargs, argspec,
                               test, settings):
    selfy = None
    arguments, kwargs = convert_positional_arguments(wrapped_test, arguments,
                                                     kwargs)

    # If the test function is a method of some kind, the bound object
    # will be the first named argument if there are any, otherwise the
    # first vararg (if any).
    if argspec.args:
        selfy = kwargs.get(argspec.args[0])
    elif arguments:
        selfy = arguments[0]

    # Ensure that we don't mistake mocks for self here.
    # This can cause the mock to be used as the test runner.
    if is_mock(selfy):
        selfy = None

    test_runner = new_style_executor(selfy)

    arguments = tuple(arguments)

    search_strategy = st.tuples(
        st.just(arguments),
        st.fixed_dictionaries(generator_kwargs).map(
            lambda args: dict(args, **kwargs)))

    if selfy is not None:
        search_strategy = WithRunner(search_strategy, selfy)

    search_strategy.validate()

    return arguments, kwargs, test_runner, search_strategy
示例#2
0
def process_arguments_to_given(wrapped_test, arguments, kwargs,
                               generator_arguments, generator_kwargs, argspec,
                               test, settings):
    import hypothesis.strategies as sd

    selfy = None
    arguments, kwargs = convert_positional_arguments(wrapped_test, arguments,
                                                     kwargs)

    # If the test function is a method of some kind, the bound object
    # will be the first named argument if there are any, otherwise the
    # first vararg (if any).
    if argspec.args:
        selfy = kwargs.get(argspec.args[0])
    elif arguments:
        selfy = arguments[0]
    test_runner = new_style_executor(selfy)

    arguments = tuple(arguments)

    given_specifier = sd.tuples(
        sd.just(arguments),
        sd.fixed_dictionaries(generator_kwargs).map(
            lambda args: dict(args, **kwargs)))

    search_strategy = given_specifier
    if selfy is not None:
        search_strategy = WithRunner(search_strategy, selfy)

    search_strategy.validate()

    return arguments, kwargs, test_runner, search_strategy
示例#3
0
def process_arguments_to_given(
    wrapped_test,
    arguments,
    kwargs,
    generator_arguments,
    generator_kwargs,
    argspec,
    test,
    settings,
):
    selfy = None
    arguments, kwargs = convert_positional_arguments(wrapped_test, arguments, kwargs)

    # If the test function is a method of some kind, the bound object
    # will be the first named argument if there are any, otherwise the
    # first vararg (if any).
    if argspec.args:
        selfy = kwargs.get(argspec.args[0])
    elif arguments:
        selfy = arguments[0]

    # Ensure that we don't mistake mocks for self here.
    # This can cause the mock to be used as the test runner.
    if is_mock(selfy):
        selfy = None

    test_runner = new_style_executor(selfy)

    arguments = tuple(arguments)

    # We use TupleStrategy over tuples() here to avoid polluting
    # st.STRATEGY_CACHE with references (see #493), and because this is
    # trivial anyway if the fixed_dictionaries strategy is cacheable.
    search_strategy = TupleStrategy(
        (
            st.just(arguments),
            st.fixed_dictionaries(generator_kwargs).map(
                lambda args: dict(args, **kwargs)
            ),
        )
    )

    if selfy is not None:
        search_strategy = WithRunner(search_strategy, selfy)

    search_strategy.validate()

    return arguments, kwargs, test_runner, search_strategy
示例#4
0
def process_arguments_to_given(
    wrapped_test,
    arguments,
    kwargs,
    generator_arguments,
    generator_kwargs,
    argspec,
    test,
    settings,
):
    selfy = None
    arguments, kwargs = convert_positional_arguments(wrapped_test, arguments, kwargs)

    # If the test function is a method of some kind, the bound object
    # will be the first named argument if there are any, otherwise the
    # first vararg (if any).
    if argspec.args:
        selfy = kwargs.get(argspec.args[0])
    elif arguments:
        selfy = arguments[0]

    # Ensure that we don't mistake mocks for self here.
    # This can cause the mock to be used as the test runner.
    if is_mock(selfy):
        selfy = None

    test_runner = new_style_executor(selfy)

    arguments = tuple(arguments)

    # We use TupleStrategy over tuples() here to avoid polluting
    # st.STRATEGY_CACHE with references (see #493), and because this is
    # trivial anyway if the fixed_dictionaries strategy is cacheable.
    search_strategy = TupleStrategy(
        (
            st.just(arguments),
            st.fixed_dictionaries(generator_kwargs).map(
                lambda args: dict(args, **kwargs)
            ),
        )
    )

    if selfy is not None:
        search_strategy = WithRunner(search_strategy, selfy)

    search_strategy.validate()

    return arguments, kwargs, test_runner, search_strategy
示例#5
0
文件: core.py 项目: sunito/hypothesis
def process_arguments_to_given(
    wrapped_test, arguments, kwargs, generator_arguments, generator_kwargs,
    argspec, test, settings
):
    selfy = None
    arguments, kwargs = convert_positional_arguments(
        wrapped_test, arguments, kwargs)

    # If the test function is a method of some kind, the bound object
    # will be the first named argument if there are any, otherwise the
    # first vararg (if any).
    if argspec.args:
        selfy = kwargs.get(argspec.args[0])
    elif arguments:
        selfy = arguments[0]

    # Ensure that we don't mistake mocks for self here.
    # This can cause the mock to be used as the test runner.
    if is_mock(selfy):
        selfy = None

    test_runner = new_style_executor(selfy)

    arguments = tuple(arguments)

    search_strategy = st.tuples(
        st.just(arguments),
        st.fixed_dictionaries(generator_kwargs).map(
            lambda args: dict(args, **kwargs)
        )
    )

    if selfy is not None:
        search_strategy = WithRunner(search_strategy, selfy)

    search_strategy.validate()

    return arguments, kwargs, test_runner, search_strategy
示例#6
0
        def wrapped_test(*arguments, **kwargs):
            settings = wrapped_test._hypothesis_internal_use_settings
            if wrapped_test._hypothesis_internal_use_seed is not None:
                random = Random(wrapped_test._hypothesis_internal_use_seed)
            elif settings.derandomize:
                random = Random(function_digest(test))
            else:
                random = new_random()

            import hypothesis.strategies as sd

            selfy = None
            arguments, kwargs = convert_positional_arguments(wrapped_test, arguments, kwargs)

            # If the test function is a method of some kind, the bound object
            # will be the first named argument if there are any, otherwise the
            # first vararg (if any).
            if argspec.args:
                selfy = kwargs.get(argspec.args[0])
            elif arguments:
                selfy = arguments[0]
            test_runner = new_style_executor(selfy)

            for example in reversed(getattr(wrapped_test, "hypothesis_explicit_examples", ())):
                if example.args:
                    if len(example.args) > len(original_argspec.args):
                        raise InvalidArgument(
                            "example has too many arguments for test. "
                            "Expected at most %d but got %d" % (len(original_argspec.args), len(example.args))
                        )
                    example_kwargs = dict(zip(original_argspec.args[-len(example.args) :], example.args))
                else:
                    example_kwargs = example.kwargs
                if Phase.explicit not in settings.phases:
                    continue
                example_kwargs.update(kwargs)
                # Note: Test may mutate arguments and we can't rerun explicit
                # examples, so we have to calculate the failure message at this
                # point rather than than later.
                message_on_failure = "Falsifying example: %s(%s)" % (
                    test.__name__,
                    arg_string(test, arguments, example_kwargs),
                )
                try:
                    with BuildContext() as b:
                        test_runner(None, lambda data: test(*arguments, **example_kwargs))
                except BaseException:
                    report(message_on_failure)
                    for n in b.notes:
                        report(n)
                    raise
            if settings.max_examples <= 0:
                return

            arguments = tuple(arguments)

            given_specifier = sd.tuples(
                sd.just(arguments), sd.fixed_dictionaries(generator_kwargs).map(lambda args: dict(args, **kwargs))
            )

            def fail_health_check(message, label):
                if label in settings.suppress_health_check:
                    return
                message += (
                    "\nSee https://hypothesis.readthedocs.io/en/latest/health"
                    "checks.html for more information about this. "
                )
                message += (
                    "If you want to disable just this health check, add %s "
                    "to the suppress_health_check settings for this test."
                ) % (label,)
                raise FailedHealthCheck(message)

            search_strategy = given_specifier
            if selfy is not None:
                search_strategy = WithRunner(search_strategy, selfy)

            search_strategy.validate()

            perform_health_check = settings.perform_health_check
            perform_health_check &= Settings.default.perform_health_check

            from hypothesis.internal.conjecture.data import TestData, Status, StopTest

            if not (Phase.reuse in settings.phases or Phase.generate in settings.phases):
                return

            if perform_health_check:
                health_check_random = Random(random.getrandbits(128))
                # We "pre warm" the health check with one draw to give it some
                # time to calculate any cached data. This prevents the case
                # where the first draw of the health check takes ages because
                # of loading unicode data the first time.
                data = TestData(
                    max_length=settings.buffer_size,
                    draw_bytes=lambda data, n, distribution: distribution(health_check_random, n),
                )
                with Settings(settings, verbosity=Verbosity.quiet):
                    try:
                        test_runner(data, reify_and_execute(search_strategy, lambda *args, **kwargs: None))
                    except BaseException:
                        pass
                count = 0
                overruns = 0
                filtered_draws = 0
                start = time.time()
                while count < 10 and time.time() < start + 1 and filtered_draws < 50 and overruns < 20:
                    try:
                        data = TestData(
                            max_length=settings.buffer_size,
                            draw_bytes=lambda data, n, distribution: distribution(health_check_random, n),
                        )
                        with Settings(settings, verbosity=Verbosity.quiet):
                            test_runner(data, reify_and_execute(search_strategy, lambda *args, **kwargs: None))
                        count += 1
                    except UnsatisfiedAssumption:
                        filtered_draws += 1
                    except StopTest:
                        if data.status == Status.INVALID:
                            filtered_draws += 1
                        else:
                            assert data.status == Status.OVERRUN
                            overruns += 1
                    except InvalidArgument:
                        raise
                    except Exception:
                        if HealthCheck.exception_in_generation in settings.suppress_health_check:
                            raise
                        report(traceback.format_exc())
                        if test_runner is default_new_style_executor:
                            fail_health_check(
                                "An exception occurred during data "
                                "generation in initial health check. "
                                "This indicates a bug in the strategy. "
                                "This could either be a Hypothesis bug or "
                                "an error in a function you've passed to "
                                "it to construct your data.",
                                HealthCheck.exception_in_generation,
                            )
                        else:
                            fail_health_check(
                                "An exception occurred during data "
                                "generation in initial health check. "
                                "This indicates a bug in the strategy. "
                                "This could either be a Hypothesis bug or "
                                "an error in a function you've passed to "
                                "it to construct your data. Additionally, "
                                "you have a custom executor, which means "
                                "that this could be your executor failing "
                                "to handle a function which returns None. ",
                                HealthCheck.exception_in_generation,
                            )
                if overruns >= 20 or (not count and overruns > 0):
                    fail_health_check(
                        (
                            "Examples routinely exceeded the max allowable size. "
                            "(%d examples overran while generating %d valid ones)"
                            ". Generating examples this large will usually lead to"
                            " bad results. You should try setting average_size or "
                            "max_size parameters on your collections and turning "
                            "max_leaves down on recursive() calls."
                        )
                        % (overruns, count),
                        HealthCheck.data_too_large,
                    )
                if filtered_draws >= 50 or (not count and filtered_draws > 0):
                    fail_health_check(
                        (
                            "It looks like your strategy is filtering out a lot "
                            "of data. Health check found %d filtered examples but "
                            "only %d good ones. This will make your tests much "
                            "slower, and also will probably distort the data "
                            "generation quite a lot. You should adapt your "
                            "strategy to filter less. This can also be caused by "
                            "a low max_leaves parameter in recursive() calls"
                        )
                        % (filtered_draws, count),
                        HealthCheck.filter_too_much,
                    )
                runtime = time.time() - start
                if runtime > 1.0 or count < 10:
                    fail_health_check(
                        (
                            "Data generation is extremely slow: Only produced "
                            "%d valid examples in %.2f seconds (%d invalid ones "
                            "and %d exceeded maximum size). Try decreasing "
                            "size of the data you're generating (with e.g."
                            "average_size or max_leaves parameters)."
                        )
                        % (count, runtime, filtered_draws, overruns),
                        HealthCheck.too_slow,
                    )
            last_exception = [None]
            repr_for_last_exception = [None]

            def evaluate_test_data(data):
                try:
                    result = test_runner(data, reify_and_execute(search_strategy, test))
                    if result is not None and settings.perform_health_check:
                        fail_health_check(
                            ("Tests run under @given should return None, but " "%s returned %r instead.")
                            % (test.__name__, result),
                            HealthCheck.return_value,
                        )
                    return False
                except UnsatisfiedAssumption:
                    data.mark_invalid()
                except (HypothesisDeprecationWarning, FailedHealthCheck, StopTest):
                    raise
                except Exception:
                    last_exception[0] = traceback.format_exc()
                    verbose_report(last_exception[0])
                    data.mark_interesting()

            from hypothesis.internal.conjecture.engine import TestRunner

            falsifying_example = None
            database_key = str_to_bytes(fully_qualified_name(test))
            start_time = time.time()
            runner = TestRunner(evaluate_test_data, settings=settings, random=random, database_key=database_key)
            runner.run()
            run_time = time.time() - start_time
            timed_out = settings.timeout > 0 and run_time >= settings.timeout
            if runner.last_data is None:
                return
            if runner.last_data.status == Status.INTERESTING:
                falsifying_example = runner.last_data.buffer
                if settings.database is not None:
                    settings.database.save(database_key, falsifying_example)
            else:
                if runner.valid_examples < min(settings.min_satisfying_examples, settings.max_examples):
                    if timed_out:
                        raise Timeout(
                            (
                                "Ran out of time before finding a satisfying "
                                "example for "
                                "%s. Only found %d examples in " + "%.2fs."
                            )
                            % (get_pretty_function_description(test), runner.valid_examples, run_time)
                        )
                    else:
                        raise Unsatisfiable(
                            (
                                "Unable to satisfy assumptions of hypothesis "
                                "%s. Only %d examples considered "
                                "satisfied assumptions"
                            )
                            % (get_pretty_function_description(test), runner.valid_examples)
                        )
                return

            assert last_exception[0] is not None

            try:
                with settings:
                    test_runner(
                        TestData.for_buffer(falsifying_example),
                        reify_and_execute(search_strategy, test, print_example=True, is_final=True),
                    )
            except (UnsatisfiedAssumption, StopTest):
                report(traceback.format_exc())
                raise Flaky(
                    "Unreliable assumption: An example which satisfied " "assumptions on the first run now fails it."
                )

            report("Failed to reproduce exception. Expected: \n" + last_exception[0])

            filter_message = (
                "Unreliable test data: Failed to reproduce a failure "
                "and then when it came to recreating the example in "
                "order to print the test data with a flaky result "
                "the example was filtered out (by e.g. a "
                "call to filter in your strategy) when we didn't "
                "expect it to be."
            )

            try:
                test_runner(
                    TestData.for_buffer(falsifying_example),
                    reify_and_execute(
                        search_strategy,
                        test_is_flaky(test, repr_for_last_exception[0]),
                        print_example=True,
                        is_final=True,
                    ),
                )
            except (UnsatisfiedAssumption, StopTest):
                raise Flaky(filter_message)
示例#7
0
文件: core.py 项目: jerith/hypothesis
        def wrapped_test(*arguments, **kwargs):
            settings = wrapped_test._hypothesis_internal_use_settings
            if wrapped_test._hypothesis_internal_use_seed is not None:
                random = Random(
                    wrapped_test._hypothesis_internal_use_seed)
            elif settings.derandomize:
                random = Random(function_digest(test))
            else:
                random = new_random()

            import hypothesis.strategies as sd

            selfy = None
            arguments, kwargs = convert_positional_arguments(
                wrapped_test, arguments, kwargs)

            # If the test function is a method of some kind, the bound object
            # will be the first named argument if there are any, otherwise the
            # first vararg (if any).
            if argspec.args:
                selfy = kwargs.get(argspec.args[0])
            elif arguments:
                selfy = arguments[0]
            test_runner = new_style_executor(selfy)

            for example in reversed(getattr(
                wrapped_test, 'hypothesis_explicit_examples', ()
            )):
                if example.args:
                    if len(example.args) > len(original_argspec.args):
                        raise InvalidArgument(
                            'example has too many arguments for test. '
                            'Expected at most %d but got %d' % (
                                len(original_argspec.args), len(example.args)))
                    example_kwargs = dict(zip(
                        original_argspec.args[-len(example.args):],
                        example.args
                    ))
                else:
                    example_kwargs = example.kwargs
                example_kwargs.update(kwargs)
                # Note: Test may mutate arguments and we can't rerun explicit
                # examples, so we have to calculate the failure message at this
                # point rather than than later.
                message_on_failure = 'Falsifying example: %s(%s)' % (
                    test.__name__, arg_string(test, arguments, example_kwargs)
                )
                try:
                    with BuildContext() as b:
                        test_runner(
                            None,
                            lambda data: test(*arguments, **example_kwargs)
                        )
                except BaseException:
                    report(message_on_failure)
                    for n in b.notes:
                        report(n)
                    raise
            if settings.max_examples <= 0:
                return

            arguments = tuple(arguments)

            given_specifier = sd.tuples(
                sd.just(arguments),
                sd.fixed_dictionaries(generator_kwargs).map(
                    lambda args: dict(args, **kwargs)
                )
            )

            def fail_health_check(message):
                message += (
                    '\nSee http://hypothesis.readthedocs.org/en/latest/health'
                    'checks.html for more information about this.'
                )
                raise FailedHealthCheck(message)

            search_strategy = given_specifier
            search_strategy.validate()

            perform_health_check = settings.perform_health_check
            perform_health_check &= Settings.default.perform_health_check

            from hypothesis.internal.conjecture.data import TestData, Status, \
                StopTest

            if perform_health_check:
                initial_state = getglobalrandomstate()
                health_check_random = Random(random.getrandbits(128))
                # We "pre warm" the health check with one draw to give it some
                # time to calculate any cached data. This prevents the case
                # where the first draw of the health check takes ages because
                # of loading unicode data the first time.
                data = TestData(
                    max_length=settings.buffer_size,
                    draw_bytes=lambda data, n, distribution:
                    distribution(health_check_random, n)
                )
                with Settings(settings, verbosity=Verbosity.quiet):
                    try:
                        test_runner(data, reify_and_execute(
                            search_strategy,
                            lambda *args, **kwargs: None,
                        ))
                    except BaseException:
                        pass
                count = 0
                overruns = 0
                filtered_draws = 0
                start = time.time()
                while (
                    count < 10 and time.time() < start + 1 and
                    filtered_draws < 50 and overruns < 20
                ):
                    try:
                        data = TestData(
                            max_length=settings.buffer_size,
                            draw_bytes=lambda data, n, distribution:
                            distribution(health_check_random, n)
                        )
                        with Settings(settings, verbosity=Verbosity.quiet):
                            test_runner(data, reify_and_execute(
                                search_strategy,
                                lambda *args, **kwargs: None,
                            ))
                        count += 1
                    except UnsatisfiedAssumption:
                        filtered_draws += 1
                    except StopTest:
                        if data.status == Status.INVALID:
                            filtered_draws += 1
                        else:
                            assert data.status == Status.OVERRUN
                            overruns += 1
                    except Exception:
                        report(traceback.format_exc())
                        if test_runner is default_new_style_executor:
                            fail_health_check(
                                'An exception occurred during data '
                                'generation in initial health check. '
                                'This indicates a bug in the strategy. '
                                'This could either be a Hypothesis bug or '
                                "an error in a function yo've passed to "
                                'it to construct your data.'
                            )
                        else:
                            fail_health_check(
                                'An exception occurred during data '
                                'generation in initial health check. '
                                'This indicates a bug in the strategy. '
                                'This could either be a Hypothesis bug or '
                                'an error in a function you\'ve passed to '
                                'it to construct your data. Additionally, '
                                'you have a custom executor, which means '
                                'that this could be your executor failing '
                                'to handle a function which returns None. '
                            )
                if overruns >= 20 or (
                    not count and overruns > 0
                ):
                    fail_health_check((
                        'Examples routinely exceeded the max allowable size. '
                        '(%d examples overran while generating %d valid ones)'
                        '. Generating examples this large will usually lead to'
                        ' bad results. You should try setting average_size or '
                        'max_size parameters on your collections and turning '
                        'max_leaves down on recursive() calls.') % (
                        overruns, count
                    ))
                if filtered_draws >= 50 or (
                    not count and filtered_draws > 0
                ):
                    fail_health_check((
                        'It looks like your strategy is filtering out a lot '
                        'of data. Health check found %d filtered examples but '
                        'only %d good ones. This will make your tests much '
                        'slower, and also will probably distort the data '
                        'generation quite a lot. You should adapt your '
                        'strategy to filter less. This can also be caused by '
                        'a low max_leaves parameter in recursive() calls') % (
                        filtered_draws, count
                    ))
                runtime = time.time() - start
                if runtime > 1.0 or count < 10:
                    fail_health_check((
                        'Data generation is extremely slow: Only produced '
                        '%d valid examples in %.2f seconds (%d invalid ones '
                        'and %d exceeded maximum size). Try decreasing '
                        "size of the data you're generating (with e.g."
                        'average_size or max_leaves parameters).'
                    ) % (count, runtime, filtered_draws, overruns))
                if getglobalrandomstate() != initial_state:
                    fail_health_check(
                        'Data generation depends on global random module. '
                        'This makes results impossible to replay, which '
                        'prevents Hypothesis from working correctly. '
                        'If you want to use methods from random, use '
                        'randoms() from hypothesis.strategies to get an '
                        'instance of Random you can use. Alternatively, you '
                        'can use the random_module() strategy to explicitly '
                        'seed the random module.'
                    )
            last_exception = [None]
            repr_for_last_exception = [None]
            performed_random_check = [False]

            def evaluate_test_data(data):
                if perform_health_check and not performed_random_check[0]:
                    initial_state = getglobalrandomstate()
                    performed_random_check[0] = True
                else:
                    initial_state = None
                try:
                    result = test_runner(data, reify_and_execute(
                        search_strategy, test,
                    ))
                    if result is not None and settings.perform_health_check:
                        raise FailedHealthCheck((
                            'Tests run under @given should return None, but '
                            '%s returned %r instead.'
                        ) % (test.__name__, result), settings)
                    return False
                except UnsatisfiedAssumption:
                    data.mark_invalid()
                except (
                    HypothesisDeprecationWarning, FailedHealthCheck,
                    StopTest,
                ):
                    raise
                except Exception:
                    last_exception[0] = traceback.format_exc()
                    verbose_report(last_exception[0])
                    data.mark_interesting()
                finally:
                    if (
                        initial_state is not None and
                        getglobalrandomstate() != initial_state
                    ):
                        fail_health_check(
                            'Your test used the global random module. '
                            'This is unlikely to work correctly. You should '
                            'consider using the randoms() strategy from '
                            'hypothesis.strategies instead. Alternatively, '
                            'you can use the random_module() strategy to '
                            'explicitly seed the random module.')

            from hypothesis.internal.conjecture.engine import TestRunner

            falsifying_example = None
            database_key = str_to_bytes(fully_qualified_name(test))
            start_time = time.time()
            runner = TestRunner(
                evaluate_test_data,
                settings=settings, random=random,
                database_key=database_key,
            )
            runner.run()
            run_time = time.time() - start_time
            timed_out = (
                settings.timeout > 0 and
                run_time >= settings.timeout
            )
            if runner.last_data.status == Status.INTERESTING:
                falsifying_example = runner.last_data.buffer
                if settings.database is not None:
                    settings.database.save(
                        database_key, falsifying_example
                    )
            else:
                if runner.valid_examples < min(
                    settings.min_satisfying_examples,
                    settings.max_examples,
                ):
                    if timed_out:
                        raise Timeout((
                            'Ran out of time before finding a satisfying '
                            'example for '
                            '%s. Only found %d examples in ' +
                            '%.2fs.'
                        ) % (
                            get_pretty_function_description(test),
                            runner.valid_examples, run_time
                        ))
                    else:
                        raise Unsatisfiable((
                            'Unable to satisfy assumptions of hypothesis '
                            '%s. Only %d examples considered '
                            'satisfied assumptions'
                        ) % (
                            get_pretty_function_description(test),
                            runner.valid_examples,))
                return

            assert last_exception[0] is not None

            try:
                with settings:
                    test_runner(
                        TestData.for_buffer(falsifying_example),
                        reify_and_execute(
                            search_strategy, test,
                            print_example=True, is_final=True
                        ))
            except (UnsatisfiedAssumption, StopTest):
                report(traceback.format_exc())
                raise Flaky(
                    'Unreliable assumption: An example which satisfied '
                    'assumptions on the first run now fails it.'
                )

            report(
                'Failed to reproduce exception. Expected: \n' +
                last_exception[0],
            )

            filter_message = (
                'Unreliable test data: Failed to reproduce a failure '
                'and then when it came to recreating the example in '
                'order to print the test data with a flaky result '
                'the example was filtered out (by e.g. a '
                'call to filter in your strategy) when we didn\'t '
                'expect it to be.'
            )

            try:
                test_runner(
                    TestData.for_buffer(falsifying_example),
                    reify_and_execute(
                        search_strategy,
                        test_is_flaky(test, repr_for_last_exception[0]),
                        print_example=True, is_final=True
                    ))
            except (UnsatisfiedAssumption, StopTest):
                raise Flaky(filter_message)
示例#8
0
        def wrapped_test(*arguments, **kwargs):
            settings = wrapped_test._hypothesis_internal_use_settings
            if wrapped_test._hypothesis_internal_use_seed is not None:
                random = Random(
                    wrapped_test._hypothesis_internal_use_seed)
            elif settings.derandomize:
                random = Random(function_digest(test))
            else:
                random = new_random()

            import hypothesis.strategies as sd

            selfy = None
            arguments, kwargs = convert_positional_arguments(
                wrapped_test, arguments, kwargs)

            # If the test function is a method of some kind, the bound object
            # will be the first named argument if there are any, otherwise the
            # first vararg (if any).
            if argspec.args:
                selfy = kwargs.get(argspec.args[0])
            elif arguments:
                selfy = arguments[0]
            test_runner = new_style_executor(selfy)

            for example in reversed(getattr(
                wrapped_test, 'hypothesis_explicit_examples', ()
            )):
                if example.args:
                    if len(example.args) > len(original_argspec.args):
                        raise InvalidArgument(
                            'example has too many arguments for test. '
                            'Expected at most %d but got %d' % (
                                len(original_argspec.args), len(example.args)))
                    example_kwargs = dict(zip(
                        original_argspec.args[-len(example.args):],
                        example.args
                    ))
                else:
                    example_kwargs = example.kwargs
                if Phase.explicit not in settings.phases:
                    continue
                example_kwargs.update(kwargs)
                # Note: Test may mutate arguments and we can't rerun explicit
                # examples, so we have to calculate the failure message at this
                # point rather than than later.
                message_on_failure = 'Falsifying example: %s(%s)' % (
                    test.__name__, arg_string(test, arguments, example_kwargs)
                )
                try:
                    with BuildContext(None) as b:
                        test_runner(
                            None,
                            lambda data: test(*arguments, **example_kwargs)
                        )
                except BaseException:
                    traceback.print_exc()
                    report(message_on_failure)
                    for n in b.notes:
                        report(n)
                    raise
            if settings.max_examples <= 0:
                return

            arguments = tuple(arguments)

            given_specifier = sd.tuples(
                sd.just(arguments),
                sd.fixed_dictionaries(generator_kwargs).map(
                    lambda args: dict(args, **kwargs)
                )
            )

            def fail_health_check(message, label):
                if label in settings.suppress_health_check:
                    return
                message += (
                    '\nSee https://hypothesis.readthedocs.io/en/latest/health'
                    'checks.html for more information about this. '
                )
                message += (
                    'If you want to disable just this health check, add %s '
                    'to the suppress_health_check settings for this test.'
                ) % (label,)
                raise FailedHealthCheck(message)

            search_strategy = given_specifier
            if selfy is not None:
                search_strategy = WithRunner(search_strategy, selfy)

            search_strategy.validate()

            perform_health_check = settings.perform_health_check
            perform_health_check &= Settings.default.perform_health_check

            from hypothesis.internal.conjecture.data import ConjectureData, \
                Status, StopTest
            if not (
                Phase.reuse in settings.phases or
                Phase.generate in settings.phases
            ):
                return

            if perform_health_check:
                health_check_random = Random(random.getrandbits(128))
                # We "pre warm" the health check with one draw to give it some
                # time to calculate any cached data. This prevents the case
                # where the first draw of the health check takes ages because
                # of loading unicode data the first time.
                data = ConjectureData(
                    max_length=settings.buffer_size,
                    draw_bytes=lambda data, n, distribution:
                    distribution(health_check_random, n)
                )
                with Settings(settings, verbosity=Verbosity.quiet):
                    try:
                        test_runner(data, reify_and_execute(
                            search_strategy,
                            lambda *args, **kwargs: None,
                        ))
                    except BaseException:
                        pass
                count = 0
                overruns = 0
                filtered_draws = 0
                start = time.time()
                while (
                    count < 10 and time.time() < start + 1 and
                    filtered_draws < 50 and overruns < 20
                ):
                    try:
                        data = ConjectureData(
                            max_length=settings.buffer_size,
                            draw_bytes=lambda data, n, distribution:
                            distribution(health_check_random, n)
                        )
                        with Settings(settings, verbosity=Verbosity.quiet):
                            test_runner(data, reify_and_execute(
                                search_strategy,
                                lambda *args, **kwargs: None,
                            ))
                        count += 1
                    except UnsatisfiedAssumption:
                        filtered_draws += 1
                    except StopTest:
                        if data.status == Status.INVALID:
                            filtered_draws += 1
                        else:
                            assert data.status == Status.OVERRUN
                            overruns += 1
                    except InvalidArgument:
                        raise
                    except Exception:
                        if (
                            HealthCheck.exception_in_generation in
                            settings.suppress_health_check
                        ):
                            raise
                        report(traceback.format_exc())
                        if test_runner is default_new_style_executor:
                            fail_health_check(
                                'An exception occurred during data '
                                'generation in initial health check. '
                                'This indicates a bug in the strategy. '
                                'This could either be a Hypothesis bug or '
                                "an error in a function you've passed to "
                                'it to construct your data.',
                                HealthCheck.exception_in_generation,
                            )
                        else:
                            fail_health_check(
                                'An exception occurred during data '
                                'generation in initial health check. '
                                'This indicates a bug in the strategy. '
                                'This could either be a Hypothesis bug or '
                                'an error in a function you\'ve passed to '
                                'it to construct your data. Additionally, '
                                'you have a custom executor, which means '
                                'that this could be your executor failing '
                                'to handle a function which returns None. ',
                                HealthCheck.exception_in_generation,
                            )
                if overruns >= 20 or (
                    not count and overruns > 0
                ):
                    fail_health_check((
                        'Examples routinely exceeded the max allowable size. '
                        '(%d examples overran while generating %d valid ones)'
                        '. Generating examples this large will usually lead to'
                        ' bad results. You should try setting average_size or '
                        'max_size parameters on your collections and turning '
                        'max_leaves down on recursive() calls.') % (
                        overruns, count
                    ), HealthCheck.data_too_large)
                if filtered_draws >= 50 or (
                    not count and filtered_draws > 0
                ):
                    fail_health_check((
                        'It looks like your strategy is filtering out a lot '
                        'of data. Health check found %d filtered examples but '
                        'only %d good ones. This will make your tests much '
                        'slower, and also will probably distort the data '
                        'generation quite a lot. You should adapt your '
                        'strategy to filter less. This can also be caused by '
                        'a low max_leaves parameter in recursive() calls') % (
                        filtered_draws, count
                    ), HealthCheck.filter_too_much)
                runtime = time.time() - start
                if runtime > 1.0 or count < 10:
                    fail_health_check((
                        'Data generation is extremely slow: Only produced '
                        '%d valid examples in %.2f seconds (%d invalid ones '
                        'and %d exceeded maximum size). Try decreasing '
                        "size of the data you're generating (with e.g."
                        'average_size or max_leaves parameters).'
                    ) % (count, runtime, filtered_draws, overruns),
                        HealthCheck.too_slow,
                    )
            last_exception = [None]
            repr_for_last_exception = [None]

            def evaluate_test_data(data):
                try:
                    result = test_runner(data, reify_and_execute(
                        search_strategy, test,
                    ))
                    if result is not None and settings.perform_health_check:
                        fail_health_check((
                            'Tests run under @given should return None, but '
                            '%s returned %r instead.'
                        ) % (test.__name__, result), HealthCheck.return_value)
                    return False
                except UnsatisfiedAssumption:
                    data.mark_invalid()
                except (
                    HypothesisDeprecationWarning, FailedHealthCheck,
                    StopTest,
                ):
                    raise
                except Exception:
                    last_exception[0] = traceback.format_exc()
                    verbose_report(last_exception[0])
                    data.mark_interesting()

            from hypothesis.internal.conjecture.engine import ConjectureRunner

            falsifying_example = None
            database_key = str_to_bytes(fully_qualified_name(test))
            start_time = time.time()
            runner = ConjectureRunner(
                evaluate_test_data,
                settings=settings, random=random,
                database_key=database_key,
            )
            runner.run()
            note_engine_for_statistics(runner)
            run_time = time.time() - start_time
            timed_out = (
                settings.timeout > 0 and
                run_time >= settings.timeout
            )
            if runner.last_data is None:
                return
            if runner.last_data.status == Status.INTERESTING:
                falsifying_example = runner.last_data.buffer
                if settings.database is not None:
                    settings.database.save(
                        database_key, falsifying_example
                    )
            else:
                if runner.valid_examples < min(
                    settings.min_satisfying_examples,
                    settings.max_examples,
                ):
                    if timed_out:
                        raise Timeout((
                            'Ran out of time before finding a satisfying '
                            'example for '
                            '%s. Only found %d examples in ' +
                            '%.2fs.'
                        ) % (
                            get_pretty_function_description(test),
                            runner.valid_examples, run_time
                        ))
                    else:
                        raise Unsatisfiable((
                            'Unable to satisfy assumptions of hypothesis '
                            '%s. Only %d examples considered '
                            'satisfied assumptions'
                        ) % (
                            get_pretty_function_description(test),
                            runner.valid_examples,))
                return

            assert last_exception[0] is not None

            try:
                with settings:
                    test_runner(
                        ConjectureData.for_buffer(falsifying_example),
                        reify_and_execute(
                            search_strategy, test,
                            print_example=True, is_final=True
                        ))
            except (UnsatisfiedAssumption, StopTest):
                report(traceback.format_exc())
                raise Flaky(
                    'Unreliable assumption: An example which satisfied '
                    'assumptions on the first run now fails it.'
                )

            report(
                'Failed to reproduce exception. Expected: \n' +
                last_exception[0],
            )

            filter_message = (
                'Unreliable test data: Failed to reproduce a failure '
                'and then when it came to recreating the example in '
                'order to print the test data with a flaky result '
                'the example was filtered out (by e.g. a '
                'call to filter in your strategy) when we didn\'t '
                'expect it to be.'
            )

            try:
                test_runner(
                    ConjectureData.for_buffer(falsifying_example),
                    reify_and_execute(
                        search_strategy,
                        test_is_flaky(test, repr_for_last_exception[0]),
                        print_example=True, is_final=True
                    ))
            except (UnsatisfiedAssumption, StopTest):
                raise Flaky(filter_message)