示例#1
0
    def test_verify_AIS(self):
        model = oRBM(input_size=self.input_size,
                     hidden_size=self.hidden_size,
                     beta=self.beta)

        model.W.set_value(self.W)
        model.b.set_value(self.b)
        model.c.set_value(self.c)

        # Brute force
        print "Computing lnZ using brute force (i.e. summing the free energy of all posible $v$)..."
        V = theano.shared(
            value=cartesian([(0, 1)] * self.input_size, dtype=config.floatX))
        brute_force_lnZ = logsumexp(-model.free_energy(V), 0)
        f_brute_force_lnZ = theano.function([], brute_force_lnZ)

        params_bak = [param.get_value() for param in model.parameters]

        print "Approximating lnZ using AIS..."
        import time
        start = time.time()

        try:
            ais_working_dir = tempfile.mkdtemp()
            result = compute_AIS(model,
                                 M=self.nb_samples,
                                 betas=self.betas,
                                 seed=1234,
                                 ais_working_dir=ais_working_dir,
                                 force=True)
            logcummean_Z, logcumstd_Z_down, logcumstd_Z_up = result[
                'logcummean_Z'], result['logcumstd_Z_down'], result[
                    'logcumstd_Z_up']
            std_lnZ = result['std_lnZ']

            print "{0} sec".format(time.time() - start)

            import pylab as plt
            plt.gca().set_xmargin(0.1)
            plt.errorbar(range(1, self.nb_samples + 1),
                         logcummean_Z,
                         yerr=[std_lnZ, std_lnZ],
                         fmt='or')
            plt.errorbar(range(1, self.nb_samples + 1),
                         logcummean_Z,
                         yerr=[logcumstd_Z_down, logcumstd_Z_up],
                         fmt='ob')
            plt.plot([1, self.nb_samples], [f_brute_force_lnZ()] * 2, '--g')
            plt.ticklabel_format(useOffset=False, axis='y')
            plt.show()
            AIS_logZ = logcummean_Z[-1]

            assert_array_equal(params_bak[0], model.W.get_value())
            assert_array_equal(params_bak[1], model.b.get_value())
            assert_array_equal(params_bak[2], model.c.get_value())

            print np.abs(AIS_logZ - f_brute_force_lnZ())
            assert_almost_equal(AIS_logZ, f_brute_force_lnZ(), decimal=2)
        finally:
            shutil.rmtree(ais_working_dir)
示例#2
0
    def test_gradients_auto_vs_manual(self):
        rng = np.random.RandomState(42)

        batch_size = 5
        input_size = 10

        model = oRBM(input_size=input_size,
                     hidden_size=32,
                     CDk=1,
                     rng=np.random.RandomState(42))

        W = rng.rand(model.hidden_size, model.input_size).astype(theano.config.floatX)
        model.W = theano.shared(value=W.astype(theano.config.floatX), name='W', borrow=True)

        b = rng.rand(model.hidden_size).astype(theano.config.floatX)
        model.b = theano.shared(value=b.astype(theano.config.floatX), name='b', borrow=True)

        c = rng.rand(model.input_size).astype(theano.config.floatX)
        model.c = theano.shared(value=c.astype(theano.config.floatX), name='c', borrow=True)

        params = [model.W, model.b, model.c]
        chain_start = T.matrix('start')
        chain_end = T.matrix('end')

        chain_start_value = (rng.rand(batch_size, input_size) > 0.5).astype(theano.config.floatX)
        chain_end_value = (rng.rand(batch_size, input_size) > 0.5).astype(theano.config.floatX)
        chain_start.tag.test_value = chain_start_value
        chain_end.tag.test_value = chain_end_value

        ### Computing gradients using automatic differentation ###
        cost = T.mean(model.free_energy(chain_start)) - T.mean(model.free_energy(chain_end))
        gparams_auto = T.grad(cost, params, consider_constant=[chain_end])

        ### Computing gradients manually ###
        h = RBM.sample_h_given_v(model, chain_start, return_probs=True)
        _h = RBM.sample_h_given_v(model, chain_end, return_probs=True)
        icdf = model.icdf_z_given_v(chain_start)
        _icdf = model.icdf_z_given_v(chain_end)

        if model.penalty == "softplus_bi":
            penalty = model.beta * T.nnet.sigmoid(model.b)
        elif self.penalty == "softplus0":
            penalty = model.beta * T.nnet.sigmoid(0)

        grad_W = (T.dot(chain_end.T, _h*_icdf) - T.dot(chain_start.T, h*icdf)).T / batch_size
        grad_b = T.mean((_h-penalty)*_icdf - (h-penalty)*icdf, axis=0)
        grad_c = T.mean(chain_end - chain_start, axis=0)

        gparams_manual = [grad_W, grad_b, grad_c]
        grad_W.name, grad_b.name, grad_c.name = "grad_W", "grad_b", "grad_c"

        for gparam_auto, gparam_manual in zip(gparams_auto, gparams_manual):
            param1 = gparam_auto.eval({chain_start: chain_start_value, chain_end: chain_end_value})
            param2 = gparam_manual.eval({chain_start: chain_start_value, chain_end: chain_end_value})
            assert_array_almost_equal(param1, param2, err_msg=gparam_manual.name)
示例#3
0
    def test_verify_AIS(self):
        model = oRBM(input_size=self.input_size,
                     hidden_size=self.hidden_size,
                     beta=self.beta)

        model.W.set_value(self.W)
        model.b.set_value(self.b)
        model.c.set_value(self.c)

        # Brute force
        print "Computing lnZ using brute force (i.e. summing the free energy of all posible $v$)..."
        V = theano.shared(value=cartesian([(0, 1)] * self.input_size, dtype=config.floatX))
        brute_force_lnZ = logsumexp(-model.free_energy(V), 0)
        f_brute_force_lnZ = theano.function([], brute_force_lnZ)

        params_bak = [param.get_value() for param in model.parameters]

        print "Approximating lnZ using AIS..."
        import time
        start = time.time()

        try:
            ais_working_dir = tempfile.mkdtemp()
            result = compute_AIS(model, M=self.nb_samples, betas=self.betas, seed=1234, ais_working_dir=ais_working_dir, force=True)
            logcummean_Z, logcumstd_Z_down, logcumstd_Z_up = result['logcummean_Z'], result['logcumstd_Z_down'], result['logcumstd_Z_up']
            std_lnZ = result['std_lnZ']

            print "{0} sec".format(time.time() - start)

            import pylab as plt
            plt.gca().set_xmargin(0.1)
            plt.errorbar(range(1, self.nb_samples+1), logcummean_Z, yerr=[std_lnZ, std_lnZ], fmt='or')
            plt.errorbar(range(1, self.nb_samples+1), logcummean_Z, yerr=[logcumstd_Z_down, logcumstd_Z_up], fmt='ob')
            plt.plot([1, self.nb_samples], [f_brute_force_lnZ()]*2, '--g')
            plt.ticklabel_format(useOffset=False, axis='y')
            plt.show()
            AIS_logZ = logcummean_Z[-1]

            assert_array_equal(params_bak[0], model.W.get_value())
            assert_array_equal(params_bak[1], model.b.get_value())
            assert_array_equal(params_bak[2], model.c.get_value())

            print np.abs(AIS_logZ - f_brute_force_lnZ())
            assert_almost_equal(AIS_logZ, f_brute_force_lnZ(), decimal=2)
        finally:
            shutil.rmtree(ais_working_dir)
示例#4
0
    def setUp(self):
        self.input_size = 4
        self.hidden_size = 3
        self.beta = 1.01
        self.batch_size = 100

        rng = np.random.RandomState(42)
        self.W = rng.randn(self.hidden_size, self.input_size).astype(config.floatX)
        self.b = rng.randn(self.hidden_size).astype(config.floatX)
        self.c = rng.randn(self.input_size).astype(config.floatX)

        self.model = oRBM(input_size=self.input_size,
                          hidden_size=self.hidden_size,
                          beta=self.beta)

        self.model.W.set_value(self.W)
        self.model.b.set_value(self.b)
        self.model.c.set_value(self.c)
示例#5
0
    def setUp(self):
        self.input_size = 4
        self.hidden_size = 3
        self.beta = 1.01
        self.batch_size = 100

        rng = np.random.RandomState(42)
        self.W = rng.randn(self.hidden_size,
                           self.input_size).astype(config.floatX)
        self.b = rng.randn(self.hidden_size).astype(config.floatX)
        self.c = rng.randn(self.input_size).astype(config.floatX)

        self.model = oRBM(input_size=self.input_size,
                          hidden_size=self.hidden_size,
                          beta=self.beta)

        self.model.W.set_value(self.W)
        self.model.b.set_value(self.b)
        self.model.c.set_value(self.c)
示例#6
0
    def test_gradients_auto_vs_manual(self):
        rng = np.random.RandomState(42)

        batch_size = 5
        input_size = 10

        model = oRBM(input_size=input_size,
                     hidden_size=32,
                     CDk=1,
                     rng=np.random.RandomState(42))

        W = rng.rand(model.hidden_size,
                     model.input_size).astype(theano.config.floatX)
        model.W = theano.shared(value=W.astype(theano.config.floatX),
                                name='W',
                                borrow=True)

        b = rng.rand(model.hidden_size).astype(theano.config.floatX)
        model.b = theano.shared(value=b.astype(theano.config.floatX),
                                name='b',
                                borrow=True)

        c = rng.rand(model.input_size).astype(theano.config.floatX)
        model.c = theano.shared(value=c.astype(theano.config.floatX),
                                name='c',
                                borrow=True)

        params = [model.W, model.b, model.c]
        chain_start = T.matrix('start')
        chain_end = T.matrix('end')

        chain_start_value = (rng.rand(batch_size, input_size) > 0.5).astype(
            theano.config.floatX)
        chain_end_value = (rng.rand(batch_size, input_size) > 0.5).astype(
            theano.config.floatX)
        chain_start.tag.test_value = chain_start_value
        chain_end.tag.test_value = chain_end_value

        ### Computing gradients using automatic differentation ###
        cost = T.mean(model.free_energy(chain_start)) - T.mean(
            model.free_energy(chain_end))
        gparams_auto = T.grad(cost, params, consider_constant=[chain_end])

        ### Computing gradients manually ###
        h = RBM.sample_h_given_v(model, chain_start, return_probs=True)
        _h = RBM.sample_h_given_v(model, chain_end, return_probs=True)
        icdf = model.icdf_z_given_v(chain_start)
        _icdf = model.icdf_z_given_v(chain_end)

        if model.penalty == "softplus_bi":
            penalty = model.beta * T.nnet.sigmoid(model.b)
        elif self.penalty == "softplus0":
            penalty = model.beta * T.nnet.sigmoid(0)

        grad_W = (T.dot(chain_end.T, _h * _icdf) -
                  T.dot(chain_start.T, h * icdf)).T / batch_size
        grad_b = T.mean((_h - penalty) * _icdf - (h - penalty) * icdf, axis=0)
        grad_c = T.mean(chain_end - chain_start, axis=0)

        gparams_manual = [grad_W, grad_b, grad_c]
        grad_W.name, grad_b.name, grad_c.name = "grad_W", "grad_b", "grad_c"

        for gparam_auto, gparam_manual in zip(gparams_auto, gparams_manual):
            param1 = gparam_auto.eval({
                chain_start: chain_start_value,
                chain_end: chain_end_value
            })
            param2 = gparam_manual.eval({
                chain_start: chain_start_value,
                chain_end: chain_end_value
            })
            assert_array_almost_equal(param1,
                                      param2,
                                      err_msg=gparam_manual.name)
示例#7
0
def model_factory(model_name, input_size, hyperparams):
    #Set learning rate method that will be used.
    if hyperparams["ConstantLearningRate"] is not None:
        infos = hyperparams["ConstantLearningRate"].split()
        lr = float(infos[0])
        lr_method = ConstantLearningRate(lr=lr)
    elif hyperparams["ADAGRAD"] is not None:
        infos = hyperparams["ADAGRAD"].split()
        lr = float(infos[0])
        eps = float(infos[1]) if len(infos) > 1 else 1e-6
        lr_method = ADAGRAD(lr=lr, eps=eps)
    else:
        raise ValueError("The update rule is mandatory!")

    #Set regularization method that will be used.
    regularization_method = NoRegularization()
    if hyperparams["L1Regularization"] is not None and hyperparams[
            "L1Regularization"] != 0:
        lambda_factor = float(hyperparams["L1Regularization"])
        regularization_method = L1Regularization(lambda_factor)
    elif hyperparams["L2Regularization"] is not None and hyperparams[
            "L2Regularization"] != 0:
        lambda_factor = float(hyperparams["L2Regularization"])
        regularization_method = L2Regularization(lambda_factor)

    #Set contrastive divergence method to use.
    CD_method = ContrastiveDivergence()
    if hyperparams["PCD"]:
        CD_method = PersistentCD(input_size,
                                 nb_particles=hyperparams['batch_size'])

    rng = np.random.RandomState(hyperparams["seed"])

    #Build model
    if model_name == "rbm":
        from iRBM.models.rbm import RBM
        model = RBM(input_size=input_size,
                    hidden_size=hyperparams["size"],
                    learning_rate=lr_method,
                    regularization=regularization_method,
                    CD=CD_method,
                    CDk=hyperparams["cdk"],
                    rng=rng)

    elif model_name == "orbm":
        from iRBM.models.orbm import oRBM
        model = oRBM(input_size=input_size,
                     hidden_size=hyperparams["size"],
                     beta=hyperparams["beta"],
                     learning_rate=lr_method,
                     regularization=regularization_method,
                     CD=CD_method,
                     CDk=hyperparams["cdk"],
                     rng=rng)

    elif model_name == "irbm":
        from iRBM.models.irbm import iRBM
        model = iRBM(input_size=input_size,
                     hidden_size=hyperparams["size"],
                     beta=hyperparams["beta"],
                     learning_rate=lr_method,
                     regularization=regularization_method,
                     CD=CD_method,
                     CDk=hyperparams["cdk"],
                     rng=rng)

    return model
示例#8
0
文件: __init__.py 项目: MarcCote/iRBM
def model_factory(model_name, input_size, hyperparams):
    #Set learning rate method that will be used.
    if hyperparams["ConstantLearningRate"] is not None:
        infos = hyperparams["ConstantLearningRate"].split()
        lr = float(infos[0])
        lr_method = ConstantLearningRate(lr=lr)
    elif hyperparams["ADAGRAD"] is not None:
        infos = hyperparams["ADAGRAD"].split()
        lr = float(infos[0])
        eps = float(infos[1]) if len(infos) > 1 else 1e-6
        lr_method = ADAGRAD(lr=lr, eps=eps)
    else:
        raise ValueError("The update rule is mandatory!")

    #Set regularization method that will be used.
    regularization_method = NoRegularization()
    if hyperparams["L1Regularization"] is not None and hyperparams["L1Regularization"] != 0:
        lambda_factor = float(hyperparams["L1Regularization"])
        regularization_method = L1Regularization(lambda_factor)
    elif hyperparams["L2Regularization"] is not None and hyperparams["L2Regularization"] != 0:
        lambda_factor = float(hyperparams["L2Regularization"])
        regularization_method = L2Regularization(lambda_factor)

    #Set contrastive divergence method to use.
    CD_method = ContrastiveDivergence()
    if hyperparams["PCD"]:
        CD_method = PersistentCD(input_size, nb_particles=hyperparams['batch_size'])

    rng = np.random.RandomState(hyperparams["seed"])

    #Build model
    if model_name == "rbm":
        from iRBM.models.rbm import RBM
        model = RBM(input_size=input_size,
                    hidden_size=hyperparams["size"],
                    learning_rate=lr_method,
                    regularization=regularization_method,
                    CD=CD_method,
                    CDk=hyperparams["cdk"],
                    rng=rng
                    )

    elif model_name == "orbm":
        from iRBM.models.orbm import oRBM
        model = oRBM(input_size=input_size,
                     hidden_size=hyperparams["size"],
                     beta=hyperparams["beta"],
                     learning_rate=lr_method,
                     regularization=regularization_method,
                     CD=CD_method,
                     CDk=hyperparams["cdk"],
                     rng=rng
                     )

    elif model_name == "irbm":
        from iRBM.models.irbm import iRBM
        model = iRBM(input_size=input_size,
                     hidden_size=hyperparams["size"],
                     beta=hyperparams["beta"],
                     learning_rate=lr_method,
                     regularization=regularization_method,
                     CD=CD_method,
                     CDk=hyperparams["cdk"],
                     rng=rng
                     )

    return model