def _select_ith_match(mx, qaid, aid): #---------------------- # Get info for the _select_ith_match plot annote_ptr[0] = 1 # Get the mx-th feature match aid1, aid2 = qaid, aid fx1, fx2 = fm[mx] fscore2 = qres.aid2_fs[aid2][mx] fk2 = qres.aid2_fk[aid2][mx] kpts1, kpts2 = ibs.get_annot_kpts([aid1, aid2]) desc1, desc2 = ibs.get_annot_desc([aid1, aid2]) kp1, kp2 = kpts1[fx1], kpts2[fx2] sift1, sift2 = desc1[fx1], desc2[fx2] info1 = '\nquery' info2 = '\nk=%r fscore=%r' % (fk2, fscore2) last_state.last_fx = fx1 # Extracted keypoints to draw extracted_list = [(rchip1, kp1, sift1, fx1, aid1, info1), (rchip2, kp2, sift2, fx2, aid2, info2)] # Normalizng Keypoint if hasattr(qres, 'filt2_meta') and 'lnbnn' in qres.filt2_meta: qfx2_norm = qres.filt2_meta['lnbnn'] # Normalizing chip and feature (aid3, fx3, normk) = qfx2_norm[fx1] rchip3 = ibs.get_annot_chips(aid3) kp3 = ibs.get_annot_kpts(aid3)[fx3] sift3 = ibs.get_annot_desc(aid3)[fx3] info3 = '\nnorm %s k=%r' % (vh.get_aidstrs(aid3), normk) extracted_list.append((rchip3, kp3, sift3, fx3, aid3, info3)) else: print('WARNING: meta doesnt exist') #---------------------- # Draw the _select_ith_match plot nRows, nCols = len(extracted_list) + same_fig, 3 # Draw matching chips and features sel_fm = np.array([(fx1, fx2)]) pnum1 = (nRows, 1, 1) if same_fig else (1, 1, 1) _chipmatch_view(pnum1, vert=False, ell_alpha=.4, ell_linewidth=1.8, colors=df2.BLUE, sel_fm=sel_fm, **kwargs) # Draw selected feature matches px = nCols * same_fig # plot offset prevsift = None if not same_fig: fnum2 = fnum + len(viz.FNUMS) fig2 = df2.figure(fnum=fnum2, docla=True, doclf=True) else: fnum2 = fnum for (rchip, kp, sift, fx, aid, info) in extracted_list: px = draw_feat_row(rchip, fx, kp, sift, fnum2, nRows, nCols, px, prevsift=prevsift, aid=aid, info=info) prevsift = sift if not same_fig: ih.connect_callback(fig2, 'button_press_event', _click_matches_click) df2.set_figtitle(figtitle + vh.get_vsstr(qaid, aid))
def chipmatch_view(self, pnum=(1, 1, 1), **kwargs_): """ just visualizes the matches using some type of lines CommandLine: python -m ibeis.viz.interact.interact_matches --test-chipmatch_view --show Example: >>> # DISABLE_DOCTEST >>> from ibeis.viz.interact.interact_matches import * # NOQA >>> self = testdata_match_interact() >>> self.chipmatch_view() >>> pt.show_if_requested() """ ibs = self.ibs aid = self.daid qaid = self.qaid fnum = self.fnum figtitle = self.figtitle xywh2_ptr = self.xywh2_ptr # drawing mode draw: with/without lines/feats mode = self.mode draw_ell = mode >= 1 draw_lines = mode == 2 self.mode = (self.mode + 1) % 3 df2.figure(fnum=fnum, docla=True, doclf=True) show_matches_kw = self.kwargs.copy() show_matches_kw.update( dict(fnum=fnum, pnum=pnum, draw_lines=draw_lines, draw_ell=draw_ell, colorbar_=True, vert=self.vert)) show_matches_kw.update(kwargs_) if self.use_homog: show_matches_kw['H1'] = self.H1 #show_matches_kw['score'] = self.score show_matches_kw['rawscore'] = self.score #ut.embed() show_matches_kw['aid2_raw_rank'] = self.rank tup = viz.viz_matches.show_matches2(ibs, self.qaid, self.daid, self.fm, self.fs, qreq_=self.qreq_, **show_matches_kw) ax, xywh1, xywh2 = tup xywh2_ptr[0] = xywh2 df2.set_figtitle(figtitle + ' ' + vh.get_vsstr(qaid, aid))
def _chipmatch_view(pnum=(1, 1, 1), **kwargs): mode = annote_ptr[0] # drawing mode draw: with/without lines/feats draw_ell = mode >= 1 draw_lines = mode == 2 annote_ptr[0] = (annote_ptr[0] + 1) % 3 df2.figure(fnum=fnum, docla=True, doclf=True) # TODO RENAME This to remove qres and rectify with show_matches tup = viz.show_matches(ibs, qres, aid, fnum=fnum, pnum=pnum, draw_lines=draw_lines, draw_ell=draw_ell, colorbar_=True, **kwargs) ax, xywh1, xywh2 = tup xywh2_ptr[0] = xywh2 df2.set_figtitle(figtitle + ' ' + vh.get_vsstr(qaid, aid))
def select_ith_match(self, mx): """ Selects the ith match and visualizes and prints information concerning features weights, keypoint details, and sift descriptions Args: mx (int) - the ith match to visualize qaid (int) - query annotation id aid (int) - database annotation id CommandLine: python -m ibeis.viz.interact.interact_matches --test-select_ith_match --show Example: >>> # DISABLE_DOCTEST >>> from ibeis.viz.interact.interact_matches import * # NOQA >>> self = testdata_match_interact(mx=1) >>> pt.show_if_requested() """ ibs = self.ibs qaid = self.qaid aid = self.daid fnum = self.fnum figtitle = self.figtitle rchip1 = self.rchip1 rchip2 = self.rchip2 aid = self.daid same_fig = self.same_fig self.mx = mx print('+--- SELECT --- ') print('qaid=%r, daid=%r' % (qaid, aid)) print('... selecting mx-th=%r feature match' % mx) if False: print('score stats:') print(ut.get_stats_str(self.fsv, axis=0, newlines=True)) print('fsv[mx] = %r' % (self.fsv[mx], )) print('fs[mx] = %r' % (self.fs[mx], )) """ # test feature weights of actual chips fx1, fx2 = fm[mx] daid = aid ibs.get_annot_fgweights([daid])[0][fx2] ibs.get_annot_fgweights([qaid])[0][fx1] """ #---------------------- # Get info for the select_ith_match plot self.mode = 1 # Get the mx-th feature match fx1, fx2 = self.fm[mx] fscore2 = self.fs[mx] fk2 = self.fk[mx] kpts1 = ibs.get_annot_kpts([self.qaid], config2_=self.query_config2_)[0] kpts2 = ibs.get_annot_kpts([self.daid], config2_=self.data_config2_)[0] desc1 = ibs.get_annot_vecs([self.qaid], config2_=self.query_config2_)[0] desc2 = ibs.get_annot_vecs([self.daid], config2_=self.data_config2_)[0] kp1, kp2 = kpts1[fx1], kpts2[fx2] sift1, sift2 = desc1[fx1], desc2[fx2] info1 = '\nquery' info2 = '\nk=%r fscore=%r' % (fk2, fscore2) #last_state.last_fx = fx1 self.last_fx = fx1 # Extracted keypoints to draw extracted_list = [(rchip1, kp1, sift1, fx1, self.qaid, info1), (rchip2, kp2, sift2, fx2, self.daid, info2)] # Normalizng Keypoint #if hasattr(cm, 'filt2_meta') and 'lnbnn' in cm.filt2_meta: # qfx2_norm = cm.filt2_meta['lnbnn'] # # Normalizing chip and feature # (aid3, fx3, normk) = qfx2_norm[fx1] # rchip3 = ibs.get_annot_chips(aid3) # kp3 = ibs.get_annot_kpts(aid3)[fx3] # sift3 = ibs.get_annot_vecs(aid3)[fx3] # info3 = '\nnorm %s k=%r' % (vh.get_aidstrs(aid3), normk) # extracted_list.append((rchip3, kp3, sift3, fx3, aid3, info3)) #else: # pass # print('WARNING: meta doesnt exist') #---------------------- # Draw the select_ith_match plot nRows, nCols = len(extracted_list) + same_fig, 3 # Draw matching chips and features sel_fm = np.array([(fx1, fx2)]) pnum1 = (nRows, 1, 1) if same_fig else (1, 1, 1) vert = self.vert if self.vert is not None else False self.chipmatch_view(pnum1, ell_alpha=.4, ell_linewidth=1.8, colors=df2.BLUE, sel_fm=sel_fm, vert=vert) # Draw selected feature matches px = nCols * same_fig # plot offset prevsift = None if not same_fig: #fnum2 = fnum + len(viz.FNUMS) fnum2 = self.fnum2 fig2 = df2.figure(fnum=fnum2, docla=True, doclf=True) else: fnum2 = fnum for (rchip, kp, sift, fx, aid, info) in extracted_list: px = viz_featrow.draw_feat_row(rchip, fx, kp, sift, fnum2, nRows, nCols, px, prevsift=prevsift, aid=aid, info=info) prevsift = sift if not same_fig: ih.connect_callback(fig2, 'button_press_event', self.on_click) df2.set_figtitle(figtitle + vh.get_vsstr(qaid, aid))
def select_ith_match(self, mx): """ Selects the ith match and visualizes and prints information concerning features weights, keypoint details, and sift descriptions Args: mx (int) - the ith match to visualize qaid (int) - query annotation id aid (int) - database annotation id CommandLine: python -m ibeis.viz.interact.interact_matches --test-select_ith_match --show Example: >>> # DISABLE_DOCTEST >>> from ibeis.viz.interact.interact_matches import * # NOQA >>> self = testdata_match_interact(mx=1) >>> pt.show_if_requested() """ ibs = self.ibs qaid = self.qaid aid = self.daid fnum = self.fnum figtitle = self.figtitle rchip1 = self.rchip1 rchip2 = self.rchip2 aid = self.daid same_fig = self.same_fig self.mx = mx print('+--- SELECT --- ') print('qaid=%r, daid=%r' % (qaid, aid)) print('... selecting mx-th=%r feature match' % mx) if False: print('score stats:') print(ut.get_stats_str(self.fsv, axis=0, newlines=True)) print('fsv[mx] = %r' % (self.fsv[mx],)) print('fs[mx] = %r' % (self.fs[mx],)) """ # test feature weights of actual chips fx1, fx2 = fm[mx] daid = aid ibs.get_annot_fgweights([daid])[0][fx2] ibs.get_annot_fgweights([qaid])[0][fx1] """ #---------------------- # Get info for the select_ith_match plot self.mode = 1 # Get the mx-th feature match fx1, fx2 = self.fm[mx] fscore2 = self.fs[mx] fk2 = self.fk[mx] kpts1 = ibs.get_annot_kpts([self.qaid], config2_=self.query_config2_)[0] kpts2 = ibs.get_annot_kpts([self.daid], config2_=self.data_config2_)[0] desc1 = ibs.get_annot_vecs([self.qaid], config2_=self.query_config2_)[0] desc2 = ibs.get_annot_vecs([self.daid], config2_=self.data_config2_)[0] kp1, kp2 = kpts1[fx1], kpts2[fx2] sift1, sift2 = desc1[fx1], desc2[fx2] info1 = '\nquery' info2 = '\nk=%r fscore=%r' % (fk2, fscore2) #last_state.last_fx = fx1 self.last_fx = fx1 # Extracted keypoints to draw extracted_list = [(rchip1, kp1, sift1, fx1, self.qaid, info1), (rchip2, kp2, sift2, fx2, self.daid, info2)] # Normalizng Keypoint #if hasattr(cm, 'filt2_meta') and 'lnbnn' in cm.filt2_meta: # qfx2_norm = cm.filt2_meta['lnbnn'] # # Normalizing chip and feature # (aid3, fx3, normk) = qfx2_norm[fx1] # rchip3 = ibs.get_annot_chips(aid3) # kp3 = ibs.get_annot_kpts(aid3)[fx3] # sift3 = ibs.get_annot_vecs(aid3)[fx3] # info3 = '\nnorm %s k=%r' % (vh.get_aidstrs(aid3), normk) # extracted_list.append((rchip3, kp3, sift3, fx3, aid3, info3)) #else: # pass # print('WARNING: meta doesnt exist') #---------------------- # Draw the select_ith_match plot nRows, nCols = len(extracted_list) + same_fig, 3 # Draw matching chips and features sel_fm = np.array([(fx1, fx2)]) pnum1 = (nRows, 1, 1) if same_fig else (1, 1, 1) vert = self.vert if self.vert is not None else False self.chipmatch_view(pnum1, ell_alpha=.4, ell_linewidth=1.8, colors=df2.BLUE, sel_fm=sel_fm, vert=vert) # Draw selected feature matches px = nCols * same_fig # plot offset prevsift = None if not same_fig: #fnum2 = fnum + len(viz.FNUMS) fnum2 = self.fnum2 fig2 = df2.figure(fnum=fnum2, docla=True, doclf=True) else: fnum2 = fnum for (rchip, kp, sift, fx, aid, info) in extracted_list: px = viz_featrow.draw_feat_row(rchip, fx, kp, sift, fnum2, nRows, nCols, px, prevsift=prevsift, aid=aid, info=info) prevsift = sift if not same_fig: ih.connect_callback(fig2, 'button_press_event', self.on_click) df2.set_figtitle(figtitle + vh.get_vsstr(qaid, aid))