def background_train(ibs, species, train_gid_set=None, global_limit=500000, **kwargs): from ibeis_cnn.ingest_ibeis import get_background_training_patches2 from ibeis_cnn.process import numpy_processed_directory2 from ibeis_cnn.models.background import train_background from ibeis_cnn.utils import save_model data_path = join(ibs.get_cachedir(), 'extracted') extracted_path = get_background_training_patches2( ibs, species, data_path, patch_size=50, train_gid_set=train_gid_set, global_limit=global_limit, **kwargs) id_file, X_file, y_file = numpy_processed_directory2(extracted_path) output_path = join(ibs.get_cachedir(), 'training', 'background') model_path = train_background(output_path, X_file, y_file) model_state = ut.load_cPkl(model_path) assert 'species' not in model_state model_state['species'] = species save_model(model_state, model_path) return model_path
def labeler_train_ibeis_cnn(ibs, species_list=None, species_mapping=None, viewpoint_mapping=None, **kwargs): from ibeis_cnn.ingest_ibeis import get_cnn_labeler_training_images from ibeis_cnn.process import numpy_processed_directory2 from ibeis_cnn.models.labeler import train_labeler from ibeis_cnn.utils import save_model data_path = join(ibs.get_cachedir(), 'extracted') extracted_path = get_cnn_labeler_training_images( ibs, data_path, category_list=species_list, category_mapping=species_mapping, viewpoint_mapping=viewpoint_mapping, **kwargs) id_file, X_file, y_file = numpy_processed_directory2(extracted_path) output_path = join(ibs.get_cachedir(), 'training', 'labeler') model_path = train_labeler(output_path, X_file, y_file) # Add the species_list to the model model_state = ut.load_cPkl(model_path) assert 'category_list' not in model_state model_state['category_list'] = species_list assert 'viewpoint_mapping' not in model_state model_state['viewpoint_mapping'] = viewpoint_mapping save_model(model_state, model_path) return model_path
def classifier_cameratrap_train(ibs, positive_imageset_id, negative_imageset_id, **kwargs): from ibeis_cnn.ingest_ibeis import get_cnn_classifier_cameratrap_binary_training_images from ibeis_cnn.process import numpy_processed_directory2 from ibeis_cnn.models.classifier import train_classifier data_path = join(ibs.get_cachedir(), 'extracted') extracted_path = get_cnn_classifier_cameratrap_binary_training_images( ibs, positive_imageset_id, negative_imageset_id, dest_path=data_path, **kwargs) id_file, X_file, y_file = numpy_processed_directory2(extracted_path) output_path = join(ibs.get_cachedir(), 'training', 'classifier-cameratrap') model_path = train_classifier(output_path, X_file, y_file) # Return model path return model_path
def classifier_binary_train(ibs, species_list, **kwargs): from ibeis_cnn.ingest_ibeis import get_cnn_classifier_binary_training_images from ibeis_cnn.process import numpy_processed_directory2 from ibeis_cnn.models.classifier import train_classifier from ibeis_cnn.utils import save_model data_path = join(ibs.get_cachedir(), 'extracted') extracted_path = get_cnn_classifier_binary_training_images( ibs, species_list, dest_path=data_path, **kwargs) id_file, X_file, y_file = numpy_processed_directory2(extracted_path) output_path = join(ibs.get_cachedir(), 'training', 'classifier-binary') model_path = train_classifier(output_path, X_file, y_file) # Add the species_list to the model model_state = ut.load_cPkl(model_path) assert 'species_list' not in model_state model_state['species_list'] = species_list save_model(model_state, model_path) # Return model path return model_path