def test_timestamps_lin(self): np.random.seed(4132) n = 50 drift = 17.14 offset = 34.323 tsa = np.cumsum(np.random.random(n) * 10) tsb = tsa * (1 + drift / 1e6) + offset # test linear drift _fcn, _drift = sync_timestamps(tsa, tsb) assert np.all(np.isclose(_fcn(tsa), tsb)) assert np.isclose(drift, _drift) # test missing indices on a imiss = np.setxor1d(np.arange(n), [1, 2, 34, 35]) _fcn, _drift, _ia, _ib = sync_timestamps(tsa[imiss], tsb, return_indices=True) assert np.all(np.isclose(_fcn(tsa[imiss[_ia]]), tsb[_ib])) # test missing indices on b _fcn, _drift, _ia, _ib = sync_timestamps(tsa, tsb[imiss], return_indices=True) assert np.all(np.isclose(_fcn(tsa[_ia]), tsb[imiss[_ib]])) # test missing indices on both imiss2 = np.setxor1d(np.arange(n), [14, 17]) _fcn, _drift, _ia, _ib = sync_timestamps(tsa[imiss], tsb[imiss2], return_indices=True) assert np.all(np.isclose(_fcn(tsa[imiss[_ia]]), tsb[imiss2[_ib]]))
def groom_pin_state(gpio, audio, ts, tolerance=2., display=False, take='first', min_diff=0.): """ Align the GPIO pin state to the FPGA audio TTLs. Any audio TTLs not reflected in the pin state are removed from the dict and the times of the detected fronts are converted to FPGA time Note: - This function is ultra safe: we probably don't need assign all the ups and down fronts separately and could potentially even align the timestamps without removing the missed fronts - The input gpio and audio dicts may be modified by this function - For training sessions the frame rate is only 30Hz and the TTLs tend to be broken up by small gaps. Setting the min_diff to 5ms helps the timestamp assignment accuracy. :param gpio: array of GPIO pin state values :param audio: dict of FPGA audio TTLs (see ibllib.io.extractors.ephys_fpga._get_sync_fronts) :param ts: camera frame times :param tolerance: two pulses need to be within this many seconds to be considered related :param take: If 'first' the first value within tolerance is assigned; if 'nearest' the closest value is assigned :param display: If true, the resulting timestamps are plotted against the raw audio signal :param min_diff: Audio TTL fronts less than min_diff seconds apart will be removed :returns: dict of GPIO FPGA front indices, polarities and FPGA aligned times :returns: audio times and polarities sans the TTLs not detected in the frame data :returns: frame times in FPGA time """ # Check that the dimensions match if np.any(gpio['indices'] >= ts.size): _logger.warning('GPIO events occurring beyond timestamps array length') keep = gpio['indices'] < ts.size gpio = {k: gpio[k][keep] for k, v in gpio.items()} assert audio['times'].size == audio[ 'polarities'].size, 'audio data dimension mismatch' # make sure that there are no 2 consecutive fall or consecutive rise events assert (np.all(np.abs(np.diff(audio['polarities'])) == 2) ), 'consecutive high/low audio events' # make sure first TTL is high assert audio['polarities'][0] == 1 # make sure audio times in order assert np.all(np.diff(audio['times']) > 0) # make sure raw timestamps increase assert np.all(np.diff(ts) > 0), 'timestamps must strictly increase' # make sure there are state changes assert gpio['indices'].any(), 'no TTLs detected in GPIO' # # make sure first GPIO state is high assert gpio['polarities'][0] == 1 """ Some audio TTLs appear to be so short that they are not recorded by the camera. These can be as short as a few microseconds. Applying a cutoff based on framerate was unsuccessful. Assigning each audio TTL to each pin state change is not easy because some onsets occur very close together (sometimes < 70ms), on the order of the delay between TTL and frame time. Also, the two clocks have some degree of drift, so the delay between audio TTL and pin state change may be zero or even negative. Here we split the events into audio onsets (lo->hi) and audio offsets (hi->lo). For each uptick in the GPIO pin state, we take the first audio onset time that was within 100ms of it. We ensure that each audio TTL is assigned only once, so a TTL that is closer to frame 3 than frame 1 may still be assigned to frame 1. """ ifronts = gpio['indices'] # The pin state flips audio_times = audio['times'] if ifronts.size != audio['times'].size: _logger.warning( 'more audio TTLs than GPIO state changes, assigning timestamps') to_remove = np.zeros(ifronts.size, dtype=bool) # unassigned GPIO fronts to remove low2high = ifronts[gpio['polarities'] == 1] high2low = ifronts[gpio['polarities'] == -1] assert low2high.size >= high2low.size # Remove and/or fuse short TTLs if min_diff > 0: short, = np.where(np.diff(audio['times']) < min_diff) audio_times = np.delete(audio['times'], np.r_[short, short + 1]) _logger.debug(f'Removed {short.size * 2} fronts TLLs less than ' f'{min_diff * 1e3:.0f}ms apart') # Onsets ups = ts[low2high] - ts[low2high][ 0] # times relative to first GPIO high onsets = audio_times[::2] - audio_times[ 0] # audio times relative to first onset # assign GPIO fronts to audio onset assigned = attribute_times(onsets, ups, tol=tolerance, take=take) unassigned = np.setdiff1d(np.arange(onsets.size), assigned[assigned > -1]) if unassigned.size > 0: _logger.debug( f'{unassigned.size} audio TTL rises were not detected by the camera' ) # Check that all pin state upticks could be attributed to an onset TTL missed = assigned == -1 if np.any(missed): # if np.any(missed := assigned == -1): # py3.8 _logger.warning(f'{sum(missed)} pin state rises could ' f'not be attributed to an audio TTL') if display: ax = plt.subplot() vertical_lines(ups[assigned > -1], linestyle='-', color='g', ax=ax, label='assigned GPIO up state') vertical_lines(ups[missed], linestyle='-', color='r', ax=ax, label='unassigned GPIO up state') vertical_lines(onsets[unassigned], linestyle=':', color='k', ax=ax, alpha=0.3, label='audio onset') vertical_lines(onsets[assigned], linestyle=':', color='b', ax=ax, label='assigned audio onset') plt.legend() plt.show() # Remove the missed fronts to_remove = np.in1d(gpio['indices'], low2high[missed]) assigned = assigned[~missed] onsets_ = audio_times[::2][assigned] # Offsets downs = ts[high2low] - ts[high2low][0] offsets = audio_times[1::2] - audio_times[1] assigned = attribute_times(offsets, downs, tol=tolerance, take=take) unassigned = np.setdiff1d(np.arange(onsets.size), assigned[assigned > -1]) if unassigned.size > 0: _logger.debug( f'{unassigned.size} audio TTL falls were not detected by the camera' ) # Check that all pin state downticks could be attributed to an offset TTL missed = assigned == -1 if np.any(missed): # if np.any(missed := assigned == -1): # py3.8 _logger.warning(f'{sum(missed)} pin state falls could ' f'not be attributed to an audio TTL') # Remove the missed fronts to_remove = np.logical_or( to_remove, np.in1d(gpio['indices'], high2low[missed])) assigned = assigned[~missed] offsets_ = audio_times[1::2][assigned] # Audio groomed if np.any(to_remove): # Check for any orphaned fronts (only one pin state edge was assigned) to_remove = np.pad(to_remove, (0, to_remove.size % 2), 'edge') # Ensure even size # Perform xor to find GPIOs where only onset or offset is marked for removal orphaned = to_remove.reshape(-1, 2).sum(axis=1) == 1 if orphaned.any(): """If there are orphaned GPIO fronts (i.e. only one edge was assigned to an audio front), remove the orphaned front its assigned audio TTL. In other words if both edges cannot be assigned to an audio TTL, we ignore the TTL entirely. This is a sign that the assignment was bad and extraction may fail.""" _logger.warning( 'Some onsets but not offsets (or vice versa) were not assigned; ' 'this may be a sign of faulty wiring or clock drift') # Remove orphaned onsets and offsets orphaned_onsets, = np.where(~to_remove.reshape(-1, 2)[:, 0] & orphaned) orphaned_offsets, = np.where(~to_remove.reshape(-1, 2)[:, 1] & orphaned) onsets_ = np.delete(onsets_, orphaned_onsets) offsets_ = np.delete(offsets_, orphaned_offsets) to_remove.reshape(-1, 2)[orphaned] = True # Remove those unassigned GPIOs gpio = {k: v[~to_remove[:v.size]] for k, v in gpio.items()} ifronts = gpio['indices'] # Assert that we've removed discrete TTLs # A failure means e.g. an up-going front of one TTL was missed # but not the down-going one. assert (np.all(np.abs(np.diff(gpio['polarities'])) == 2)) assert gpio['polarities'][0] == 1 audio_ = { 'times': np.empty(ifronts.size), 'polarities': gpio['polarities'] } audio_['times'][::2] = onsets_ audio_['times'][1::2] = offsets_ else: audio_ = audio # Align the frame times to FPGA fcn_a2b, drift_ppm = dsp.sync_timestamps(ts[ifronts], audio_['times']) _logger.debug(f'frame audio alignment drift = {drift_ppm:.2f}ppm') # Add times to GPIO dict gpio['times'] = fcn_a2b(ts[ifronts]) if display: # Plot all the onsets and offsets ax = plt.subplot() # All Audio TTLS squares(audio['times'], audio['polarities'], ax=ax, label='audio TTLs', linestyle=':', color='k', yrange=[0, 1], alpha=0.3) # GPIO x = np.insert(gpio['times'], 0, 0) y = np.arange(x.size) % 2 squares(x, y, ax=ax, label='GPIO') y = within_ranges(np.arange(ts.size), ifronts.reshape(-1, 2)) # 0 or 1 for each frame ax.plot(fcn_a2b(ts), y, 'kx', label='cam times') # Assigned audio squares(audio_['times'], audio_['polarities'], ax=ax, label='assigned audio TTL', linestyle=':', color='g', yrange=[0, 1]) ax.legend() plt.xlabel('FPGA time (s)') ax.set_yticks([0, 1]) ax.set_title('GPIO - audio TTL alignment') plt.show() return gpio, audio_, fcn_a2b(ts)