def test_pooled(): channel = 1 data = get_example_dataset(10) for img_data in data: img = img_data[channel] sum_ = img.sum() plot_pooled(img, 10) assert img.sum() == sum_
def manual_plot_fake_data_test(): shape = [1, 100, 30] count_examples = 5 data = torch.rand([count_examples] + shape) for i in range(count_examples): plot_pooled(data[i]) plt.show()
pred = model(test_sample_gpu).detach().cpu() # %% pred[0, 0].sum() # %% test_sample[0, 0].max() # %% # %% for test_sample in test: # event = event.view(1,*event.size()) # print(event.size()) scale = 10 plot_data.plot_pooled(test_sample[0, 0], scale) test_sample_gpu = test_sample.to(device) pred = model(test_sample_gpu).detach().cpu() plot_data.plot_pooled(pred[0, 0], scale) plt.show() true_hist = preproc.scale_to_01(test_sample[0]).numpy().flatten() pred_hist = preproc.scale_to_01(pred[0]).numpy().flatten() m = plt.hist([true_hist, pred_hist], bins=10, label=["true", "pred"]) plt.legend() plt.yscale("log") plt.show() # %% m
def manual_plot_MC_test(): data = get_example_dataset(10) for i, event in enumerate(data): print(event.size()) plot_pooled(event)
ev = event[0].transpose(-1, -2) gauss_blur = kornia.filters.GaussianBlur((9, 9), (1, 1)) ev = gauss_blur(ev.view(1, 1, *ev.size())) ev = ev.view(ev.size()[2::]) plt.figure(figsize=(20, 4)) plt.imshow(ev, norm=LogNorm()) plt.colorbar() #%% event_ = event.view(1, *event.size()) # fake batch dimension pred = model(event_.to(device)).detach().cpu()[0] gauss_blur = kornia.filters.GaussianBlur((21, 21), (1, 1)) ev = gauss_blur(event_) plot_pooled(ev[0][0], 5) plt.title("blurred MC truth used for loss") plot_pooled(clip_scale(event_, False)[0][0], 5, True) plt.title("MC truth") plot_pooled(clip_scale(F.sigmoid(pred[0]), True), 5, True) plt.title("prediction") #%% # model_name = "???" # torch.save(model.state_dict(),"../models/%s-dict.pt"%model_name) # torch.save(model,"../models/%s.pt"%model_name)