示例#1
0
 def testCifar100(self):
     if not os.path.exists(_CIFAR100_FOLDER):
         print 'Cifar 100 data not found, skipped'
         return
     cifar = visiondata.CifarDataset(_CIFAR100_FOLDER, is_training=True)
     self.assertEqual(cifar.size_total(), 50000)
     self.assertGreater(cifar.size(), 0)
     self.assertEqual(cifar.dim(), (32, 32, 3))
     self.assertEqual(cifar.num_channels(), 3)
     for i in range(cifar.size()):
         self.assertEqual(cifar.image(i).shape, (32, 32, 3))
         self.assertGreaterEqual(cifar.label(i), 0)
         self.assertLess(cifar.label(i), 100)
     cifar = visiondata.CifarDataset(_CIFAR100_FOLDER, is_training=False)
     self.assertEqual(cifar.size_total(), 10000)
     self.assertGreater(cifar.size(), 0)
     self.assertEqual(cifar.dim(), (32, 32, 3))
     self.assertEqual(cifar.num_channels(), 3)
     for i in range(cifar.size()):
         self.assertEqual(cifar.image(i).shape, (32, 32, 3))
         self.assertGreaterEqual(cifar.label(i), 0)
         self.assertLess(cifar.label(i), 100)
示例#2
0
'''

import cPickle as pickle
import logging
from iceberk import mpi, visiondata, pipeline, classifier, datasets, mathutil
from iceberk.experimental import code_ap
import numpy as np

fromdim = 3200
todim = 256

mpi.root_log_level(logging.DEBUG)

data_root = '/u/vis/x1/common/CIFAR/cifar-10-batches-py/'
logging.info('Loading cifar data...')
cifar = visiondata.CifarDataset(data_root, is_training=True)

"""
conv = pipeline.ConvLayer([
        pipeline.PatchExtractor([8,8], 1), # extracts patches
        pipeline.MeanvarNormalizer({'reg': 10}), # normalizes the patches
        pipeline.LinearEncoder({},
                trainer = pipeline.ZcaTrainer({'reg': 0.1})),
        pipeline.ThresholdEncoder({'alpha': 0.25, 'twoside': False},
                trainer = pipeline.NormalizedKmeansTrainer(
                     {'k': fromdim, 'max_iter':100})),
                #trainer = pipeline.OMPNTrainer(
                #      {'k': 3200, 'num_active': 10, 'max_iter':100})),
        pipeline.SpatialPooler({'grid': (2,2), 'method': 'max'}) # average pool
        ])
logging.info('Training the pipeline...')
示例#3
0
def cifar_demo():
    """Performs a demo classification on cifar
    """

    mpi.mkdir(FLAGS.output_dir)
    logging.info('Loading cifar data...')
    cifar = visiondata.CifarDataset(FLAGS.root, is_training=True)
    cifar_test = visiondata.CifarDataset(FLAGS.root, is_training=False)

    if FLAGS.trainer == "pink":
        trainer = pinker.SpatialPinkTrainer({
            'size': (FLAGS.patch, FLAGS.patch),
            'reg': 0.1
        })
    else:
        trainer = pipeline.ZcaTrainer({'reg': 0.1})

    conv = pipeline.ConvLayer([
        pipeline.PatchExtractor([FLAGS.patch, FLAGS.patch],
                                1),  # extracts patches
        pipeline.MeanvarNormalizer({'reg': 10}),  # normalizes the patches
        pipeline.LinearEncoder({}, trainer=trainer),
        pipeline.ThresholdEncoder({
            'alpha': 0.0,
            'twoside': False
        },
                                  trainer=pipeline.OMPTrainer({
                                      'k': FLAGS.fromdim,
                                      'max_iter': 100
                                  })),
        pipeline.SpatialPooler({
            'grid': (FLAGS.grid, FLAGS.grid),
            'method': FLAGS.method
        })  # average pool
    ])
    logging.info('Training the pipeline...')
    conv.train(cifar, 400000, exhaustive=True)

    logging.info('Extracting features...')
    Xtrain = conv.process_dataset(cifar, as_2d=False)
    Ytrain = cifar.labels().astype(np.int)
    Xtest = conv.process_dataset(cifar_test, as_2d=False)
    Ytest = cifar_test.labels().astype(np.int)

    # before we do feature computation, try to do dimensionality reduction
    Xtrain.resize(np.prod(Xtrain.shape[:-1]), Xtrain.shape[-1])
    Xtest.resize(np.prod(Xtest.shape[:-1]), Xtest.shape[-1])

    m, std = classifier.feature_meanstd(Xtrain, 0.01)
    Xtrain -= m
    Xtrain /= std
    Xtest -= m
    Xtest /= std

    covmat = mathutil.mpi_cov(Xtrain)
    if False:
        # directly do dimensionality reduction
        eigval, eigvec = np.linalg.eigh(covmat)
        U = eigvec[:, -FLAGS.todim:]
        Xtrain = np.dot(Xtrain, U)
        Xtest = np.dot(Xtest, U)
    else:
        # do subsampling
        import code_ap
        temp = code_ap.code_af(Xtrain, FLAGS.todim)
        sel = temp[0]
        sel = mpi.COMM.bcast(sel)
        Cpred = covmat[sel]
        Csel = Cpred[:, sel]
        W = np.linalg.solve(Csel, Cpred)
        # perform svd
        U, D, _ = np.linalg.svd(W, full_matrices=0)
        U *= D
        Xtrain = np.dot(Xtrain[:, sel], U)
        Xtest = np.dot(Xtest[:, sel], U)
    Xtrain.resize(Ytrain.shape[0], Xtrain.size / Ytrain.shape[0])
    Xtest.resize(Ytest.shape[0], Xtest.size / Ytest.shape[0])
    """
    # This part is used to do post-pooling over all features nystrom subsampling
    # normalization
    Xtrain.resize(Xtrain.shape[0], np.prod(Xtrain.shape[1:]))
    Xtest.resize(Xtest.shape[0], np.prod(Xtest.shape[1:]))
    m, std = classifier.feature_meanstd(Xtrain, reg = 0.01)
    # to match Adam Coates' pipeline
    Xtrain -= m
    Xtrain /= std
    Xtest -= m
    Xtest /= std
    
    covmat = mathutil.mpi_cov(Xtrain)
    eigval, eigvec = np.linalg.eigh(covmat)
    U = eigvec[:, -(200*FLAGS.grid*FLAGS.grid):]
    #U = eigvec[:,-400:] * np.sqrt(eigval[-400:])
    Xtrain = np.dot(Xtrain, U)
    Xtest = np.dot(Xtest, U)
    """

    w, b = classifier.l2svm_onevsall(Xtrain,
                                     Ytrain,
                                     0.002,
                                     fminargs={
                                         'disp': 0,
                                         'maxfun': 1000
                                     })
    accu_train = classifier.Evaluator.accuracy(Ytrain, np.dot(Xtrain, w) + b)
    accu_test = classifier.Evaluator.accuracy(Ytest, np.dot(Xtest, w) + b)
    logging.info('Training accuracy: %f' % accu_train)
    logging.info('Testing accuracy: %f' % accu_test)
示例#4
0
import cPickle as pickle
import logging
from iceberk import visiondata, pipeline, mpi, classifier, mathutil
import numpy as np
import os

from jiayq.experiments.feature_selection import pcfs

if mpi.is_root():
    logging.getLogger().setLevel(logging.DEBUG)

logging.info('Loading cifar data...')
cifar = visiondata.CifarDataset('/u/vis/x1/common/CIFAR/cifar-10-batches-py', \
                                is_training=True)
cifar_test = visiondata.CifarDataset(
        '/u/vis/x1/common/CIFAR/cifar-10-batches-py', \
        is_training=False)

try:
    conv = pickle.load(open('cifar_conv.pickle'))
    logging.info('Skipping first layer training')
except Exception, e:
    conv = pipeline.ConvLayer([
        pipeline.PatchExtractor([6, 6], 1),  # extracts patches
        pipeline.MeanvarNormalizer({'reg': 10}),  # normalizes the patches
        pipeline.LinearEncoder({}, trainer=pipeline.ZcaTrainer(
            {'reg': 0.1})),  # Does whitening
        pipeline.ThresholdEncoder({
            'alpha': 0.0,
            'twoside': False
        },
示例#5
0
def cifar_demo():
    """Performs a demo classification on cifar
    """
    mpi.mkdir(FLAGS.output_dir)
    logging.info('Loading cifar data...')
    cifar = visiondata.CifarDataset(FLAGS.root, is_training=True)
    cifar_test = visiondata.CifarDataset(FLAGS.root, is_training=False)
    conv = pipeline.ConvLayer([
        pipeline.PatchExtractor([6, 6], 1),  # extracts patches
        pipeline.MeanvarNormalizer({'reg': 10}),  # normalizes the patches
        pipeline.LinearEncoder({}, trainer=pipeline.ZcaTrainer(
            {'reg': 0.1})),  # Does whitening
        pipeline.ThresholdEncoder({
            'alpha': 0.25,
            'twoside': True
        },
                                  trainer=pipeline.OMPTrainer({
                                      'k': 800,
                                      'max_iter': 100
                                  })),  # does encoding
        pipeline.SpatialPooler({
            'grid': (2, 2),
            'method': 'ave'
        })  # average pool
    ])
    logging.info('Training the pipeline...')
    conv.train(cifar, 50000)
    logging.info('Dumping the pipeline...')
    if mpi.is_root():
        with open(os.path.join(FLAGS.output_dir, FLAGS.model_file),
                  'w') as fid:
            pickle.dump(conv, fid)
            fid.close()
    with open(os.path.join(FLAGS.output_dir, FLAGS.model_file), 'r') as fid:
        conv = pickle.load(fid)
    logging.info('Extracting features...')
    Xtrain = conv.process_dataset(cifar, as_2d=True)
    mpi.dump_matrix_multi(
        Xtrain, os.path.join(FLAGS.output_dir, FLAGS.feature_file + '_train'))
    Ytrain = cifar.labels().astype(np.int)
    Xtest = conv.process_dataset(cifar_test, as_2d=True)
    mpi.dump_matrix_multi(
        Xtest, os.path.join(FLAGS.output_dir, FLAGS.feature_file + '_test'))
    Ytest = cifar_test.labels().astype(np.int)

    # normalization
    m, std = classifier.feature_meanstd(Xtrain)
    Xtrain -= m
    Xtrain /= std
    Xtest -= m
    Xtest /= std

    w, b = classifier.l2svm_onevsall(Xtrain, Ytrain, 0.01)
    if mpi.is_root():
        with open(os.path.join(FLAGS.output_dir, FLAGS.svm_file), 'w') as fid:
            pickle.dump({'m': m, 'std': std, 'w': w, 'b': b}, fid)
    accu = np.sum(Ytrain == (np.dot(Xtrain,w)+b).argmax(axis=1)) \
            / float(len(Ytrain))
    accu_test = np.sum(Ytest == (np.dot(Xtest,w)+b).argmax(axis=1)) \
            / float(len(Ytest))

    logging.info('Training accuracy: %f' % accu)
    logging.info('Testing accuracy: %f' % accu_test)
示例#6
0
def cifar_demo():
    """Performs a demo classification on cifar
    """

    mpi.mkdir(FLAGS.output_dir)
    logging.info('Loading cifar data...')
    cifar = visiondata.CifarDataset(FLAGS.root, is_training=True)
    cifar_test = visiondata.CifarDataset(FLAGS.root, is_training=False)

    conv = pipeline.ConvLayer([
        pipeline.PatchExtractor([6, 6], 1),  # extracts patches
        pipeline.MeanvarNormalizer({'reg': 10}),  # normalizes the patches
        pipeline.LinearEncoder({}, trainer=pipeline.ZcaTrainer({'reg': 0.1})),
        pipeline.ThresholdEncoder({
            'alpha': 0.25,
            'twoside': False
        },
                                  trainer=pipeline.NormalizedKmeansTrainer({
                                      'k':
                                      FLAGS.fromdim,
                                      'max_iter':
                                      100
                                  })),
        pipeline.SpatialPooler({
            'grid': (FLAGS.grid, FLAGS.grid),
            'method': FLAGS.method
        })  # average pool
    ])
    logging.info('Training the pipeline...')
    conv.train(cifar, 400000, exhaustive=True)

    logging.info('Extracting features...')
    Xtrain = conv.process_dataset(cifar, as_2d=False)
    Ytrain = cifar.labels().astype(np.int)
    Xtest = conv.process_dataset(cifar_test, as_2d=False)
    Ytest = cifar_test.labels().astype(np.int)

    # before we do feature computation, try to do dimensionality reduction
    Xtrain.resize(np.prod(Xtrain.shape[:-1]), Xtrain.shape[-1])
    Xtest.resize(np.prod(Xtest.shape[:-1]), Xtest.shape[-1])

    m, std = classifier.feature_meanstd(Xtrain, 0.01)
    Xtrain -= m
    Xtrain /= std
    Xtest -= m
    Xtest /= std

    covmat = mathutil.mpi_cov(Xtrain)

    current_dim = FLAGS.fromdim
    if FLAGS.svd == 1:
        eigval, eigvec = np.linalg.eigh(covmat)
    while current_dim >= 100:
        if current_dim < FLAGS.fromdim:
            if FLAGS.svd == 1:
                # directly do dimensionality reduction
                U = eigvec[:, -current_dim:]
                Xtrain_red = np.dot(Xtrain, U)
                Xtest_red = np.dot(Xtest, U)
            else:
                # do subsampling
                temp = code_ap.code_af(Xtrain, current_dim)
                logging.info("selected %d dims" % len(temp[0]))
                sel = temp[0]
                sel = mpi.COMM.bcast(sel)
                Cpred = covmat[sel]
                Csel = Cpred[:, sel]
                W = np.linalg.solve(Csel, Cpred)
                # perform svd
                U, D, _ = np.linalg.svd(W, full_matrices=0)
                U *= D
                Xtrain_red = np.dot(Xtrain[:, sel], U)
                Xtest_red = np.dot(Xtest[:, sel], U)
            Xtrain_red.resize(Ytrain.shape[0],
                              Xtrain_red.size / Ytrain.shape[0])
            Xtest_red.resize(Ytest.shape[0], Xtest_red.size / Ytest.shape[0])
        else:
            Xtrain_red = Xtrain.copy()
            Xtest_red = Xtest.copy()
            Xtrain_red.resize(Ytrain.shape[0],
                              Xtrain_red.size / Ytrain.shape[0])
            Xtest_red.resize(Ytest.shape[0], Xtest_red.size / Ytest.shape[0])

        w, b = classifier.l2svm_onevsall(Xtrain_red,
                                         Ytrain,
                                         0.005,
                                         fminargs={
                                             'disp': 0,
                                             'maxfun': 1000
                                         })
        accu_train = classifier.Evaluator.accuracy(Ytrain,
                                                   np.dot(Xtrain_red, w) + b)
        accu_test = classifier.Evaluator.accuracy(Ytest,
                                                  np.dot(Xtest_red, w) + b)
        logging.info('%d - %d, Training accuracy: %f' %
                     (FLAGS.fromdim, current_dim, accu_train))
        logging.info('%d - %d, Testing accuracy: %f' %
                     (FLAGS.fromdim, current_dim, accu_test))
        current_dim /= 2