def list_files(): """Endpoint to list files on the server.""" files = [] for filename in os.listdir(UPLOAD_DIRECTORY): path = os.path.join(UPLOAD_DIRECTORY, filename) ic(path, filename) if os.path.isfile(path): files.append(filename) return jsonify(files)
def main(): try: fn = sys.argv[1] except IndexError: print('Usage: {} file_name'.format(sys.argv[0])) sys.exit(1) ic(fn) import requests url = "http://localhost:5000" # url = "http://ryoko3.local:5000" print("Files on Server:") response = requests.get( '{}/filesBarriersEngagingTelecomRelating'.format(url)) ic(response.status_code) ic(response.json()) # http://docs.python-requests.org/en/latest/user/quickstart/#post-a-multipart-encoded-file print('-' * 23) print("Uploading file: {}".format(fn)) fin = open(fn, 'rb') files = {'file': fin} try: r = requests.post( '{}/uploadAlgeriaFreedomBraceletWorlds'.format(url), files=files) ic(r.status_code) finally: fin.close()
def run(): dict_data = { 'edad' : [ 10, 9, 13, 14, 12, 11, 12], 'cm' : [ 115, 110, 130, 155, 125, 120, 125], 'pais' : [ 'co', 'mx', 'co', 'mx', 'mx', 'ch', 'ch'], 'genero' : [ 'M', 'F', 'F', 'M', 'M', 'M', 'F'], 'Q1' : [ 5, 10, 8, np.nan, 7, 8, 3], 'Q2' : [ 7, 9, 9, 8, 8, 8, 9] } ic(dict_data) df = pd.DataFrame(dict_data) ic(df) # Instruccion para crear un archivo en formato excel a partir del dataframe df.to_excel(dir_pandas.format('test_excel.xlsx')) # Instruccion para crear un archivo en formato excel a partir del dataframe, quitando el indexado del dataframe df.to_excel(dir_pandas.format('test_excel_2.xlsx'), index = False) # Instruccion para crear un archivo en formato excel a partir del dataframe, quitando el indexado del dataframe y colocando un nombre a la hoja df.to_excel(dir_pandas.format('test_excel_3.xlsx'), index = False, sheet_name = 'Sheet 1') # Instruccion para crear un archivo en formato json a partir del dataframe df.to_json(dir_pandas.format('test_json.json')) # Instruccion para crear un archivo en formato pickle a partir del dataframe df.to_pickle(dir_pandas.format('test_pickle.pkl')) # Instruccion para crear un archivo en formato pickle a partir del dataframe df.to_parquet(dir_pandas.format('test_parquet.parquet')) # Instruccion para crear un archivo en formato hdf a partir del dataframe # Esta línea esta comentada debido a un problema para instalar las librerias necesarias para trabajar con este tipo de archivo #df.to_hdf(dir_pandas.format('test_hadoop.h5'), key = 'data', format = 'table') """ La lectura de los archivos atiende al tipo y es similar en todos los casos. No existe un archivo correcto o incorrecto, esto depende totalmente del uso y las condiciones con las cuales estaremos trabajando, ya que hay archivos que destacan por el entorno, por la usabilidad, el peso e incluso por la herramienta que los usará como insumo. En esencia, todos brindan la misma información del dataframe, eso es lo verdaderamente importante """ ic(pd.read_excel(dir_pandas.format('test_excel.xlsx'))) ic(pd.read_excel(dir_pandas.format('test_excel_2.xlsx'))) ic(pd.read_json(dir_pandas.format('test_json.json'))) ic(pd.read_pickle(dir_pandas.format('test_pickle.pkl'))) ic(pd.read_parquet(dir_pandas.format('test_parquet.parquet')))
def __init__(self, min=0, max=2): self.min_scale = min self.max_scale = max self.count = 0 ic("USE BBOX_JITTER") ic(min, max)
def testSingleTupleArgument(self): with disableColoring(), captureStandardStreams() as (out, err): ic((a, b)) pair = parseOutputIntoPairs(out, err, 1)[0][0] self.assertEqual(pair, ('(a, b)', '(1, 2)'))
def testReturnValue(self): with disableColoring(), captureStandardStreams() as (out, err): assert ic() is None assert ic(1) == 1 assert ic(1, 2, 3) == (1, 2, 3)
def testCallSurroundedByExpressions(self): with disableColoring(), captureStandardStreams() as (out, err): noop(); ic(a); noop() # noqa assert parseOutputIntoPairs(out, err, 1)[0][0] == ('a', '1')
def testMultipleArguments(self): with disableColoring(), captureStandardStreams() as (out, err): ic(a, b) pairs = parseOutputIntoPairs(out, err, 1)[0] assert pairs == [('a', '1'), ('b', '2')]
def testWithoutArgs(self): with disableColoring(), captureStandardStreams() as (out, err): ic() assert lineIsContextAndTime(err.getvalue())
if __name__ == "__main__": model = Model("simple-acquaintances") add_predicates(model) add_rules(model) # inference results = infer(model) write_results(results, model) # save intermediate results out_path = pathlib.Path("knows_obs.tsv") ic(out_path) df = trace_predicate("Knows", Partition.OBSERVATIONS, out_path) ic(df) ic(compare_predicate(out_path, df)) out_path = pathlib.Path("lived_obs.tsv") ic(out_path) df = trace_predicate("Lived", Partition.OBSERVATIONS, out_path) ic(df) out_path = pathlib.Path("likes_obs.tsv") ic(out_path) df = trace_predicate("Likes", Partition.OBSERVATIONS, out_path) ic(df) out_path = pathlib.Path("knows_tar.tsv")
import os from icecream import ic ic(os.getcwd()) ic(__file__) ic(os.path.dirname(os.path.abspath(__file__)))
temp = self.q self.q = self.p - self.q self.p = temp def search(self, sequence, element): self.start_init(sequence) result_index = -1 while not self.stop: if self.i < 0: self.up_index() elif self.i >= len(sequence): self.down_index() elif sequence[self.i] == element: result_index = self.i break elif element < sequence[self.i]: self.down_index() elif element > sequence[self.i]: self.up_index() return result_index if __name__ == '__main__': sequence = [-2, 0, 2, 4, 7, 10, 12, 45, 76] dude = FibonacciSearch() element = 7 ic(dude.search(sequence, element))
logging.info( str("##############################\n" + str(time.time())) + ", starting_trial, " + str(i) + str("\n##############################")) task.trial_start() while task.trial_running: task.run() raise SystemExit # graceful exit except (KeyboardInterrupt, SystemExit): print(Fore.RED + Style.BRIGHT + 'Exiting now...' + Style.RESET_ALL) ic('about to call end_session()') task.end_session() ic('just called end_session()') # save dicts to disk scipy.io.savemat(session_info['file_basename'] + '_session_info.mat', {'session_info': session_info}) pickle.dump( session_info, open(session_info['file_basename'] + '_session_info.pkl', "wb")) pygame.quit() # # exit because of error # except (RuntimeError) as ex: # print(Fore.RED + Style.BRIGHT + 'ERROR: Exiting now' + Style.RESET_ALL) # # save dicts to disk # scipy.io.savemat(session_info['file_basename'] + '_session_info.mat', {'session_info' : session_info})
default="./") parser.add_argument("-o", "--out", help="a single pickle file name as an output", default="outfile.pkl") parser.add_argument("-s", "--entry_stop", help="entry_stop to stop reading the root file", default=None) args = parser.parse_args() files = os.listdir(args.dirname) print(files) dfs = [] for f in files: df = pd.read_pickle(args.dirname + f) dfs.append(df) result = pd.concat(dfs) ic(result) result.to_pickle(args.dirname + "merged_" + str(len(files)) + ".pkl") #df = pd.read_pickle(args.fname) #ic(df)
def run(): df_meteoritos = pd.read_csv(dir_pandas.format('Meteorite_Landings.csv')) # Se presentan los 10 primeros valores del csv ic(df_meteoritos.head(10)) # Se presentan los 10 ultimos valores del csv ic(df_meteoritos.tail(10)) # Se presentan 10 valores aleatorios del csv ic(df_meteoritos.sample(10)) # Se presenta la composición matricial del csv, que en este caso es de 45716 filas con 10 columnas ic(df_meteoritos.shape) # Se presenta el tamaño del csv, que es de 45716 elementos ic(df_meteoritos.size) # Se presenta el valor del indexado del csv, que va de 0 a 45715 con avance de 1 ic(df_meteoritos.index) # Se presenta el nombre de las columnas que componen al csv ic(df_meteoritos.columns) # Se presenta información general del csv, como la composición de columnas, tipos de dato y uso de memoria ic(df_meteoritos.info()) # Se presenta información especial de los campos numéricos, un primer vistazo de la información ic(df_meteoritos.describe()) # Se presenta información especial de los campos numéricos, un primer vistazo de la información, incluyendo los campos alfanumericos ic(df_meteoritos.describe(include = 'all')) # Se muestran los tipos de dato correspondientes a cada columna ic(df_meteoritos.dtypes) # Se muestran los tipos de dato correspondientes a cada columna con base a un proceso de optimización que realiza pandas ic(df_meteoritos.convert_dtypes().dtypes)
def uploaded_files(filename): ic(app.config['UPLOAD_FOLDER']) ic(filename) return send_from_directory(app.config['UPLOAD_FOLDER'], filename)
#print('sayi1: ',sayi1) #print('sayi2: ', sayi2) #ic(sayi1) #ic(sayi2) def topla(sayi): return sayi + 5 #ic(topla(4)) #ic(topla(5)) def giris(kullanici:bool): if kullanici: ic() else: ic() #giris(kullanici=False) def zamanGetir(): return f'{datetime.now()} |>' ic.configureOutput(prefix=zamanGetir()) for _ in range(3): time.sleep(1) ic('Merhaba') ic(topla(25)) ic(topla(-2))
def testSingleArgument(self): with disableColoring(), captureStandardStreams() as (out, err): ic(a) assert parseOutputIntoPairs(out, err, 1)[0][0] == ('a', '1')
def giris(kullanici:bool): if kullanici: ic() else: ic()
def testMultipleCallsOnSameLine(self): with disableColoring(), captureStandardStreams() as (out, err): ic(a); ic(b, c) # noqa pairs = parseOutputIntoPairs(out, err, 2) assert pairs[0][0] == ('a', '1') assert pairs[1] == [('b', '2'), ('c', '3')]
from icecream import ic if __name__ == '__main__': a = 'abcdefj' b = 'abc' if b in a: # 1:使用字符串切片,实现字符串翻转 a = a[::-1] ic(a) # 2:使用reversed方法,缺点是速度慢 a = ''.join(reversed(a)) # a = ''.join(['a', 'b', 'c']) print(a, "+", type(a)) # for i in range(len(a), 0): # tmp.append(a[i]) # a = str(tmp) # print(a)
def testComments(self): with disableColoring(), captureStandardStreams() as (out, err): """Comment."""; ic(); # Comment. # noqa assert lineIsContextAndTime(err.getvalue())
from icecream import ic # Load the MNIST dataset and apply min/max scaling to scale the pixel intensity value to the range [0,1](each image is #represented by an 8*8 = 64-dim feature vector). print("[INFO] loading MNIST (sample) dataset...") digits = datasets.load_digits() data = digits.data.astype("float") # feature scaling: min/max normalizing. data = (data - data.min()) / (data.max() - data.min()) print("[INFO] samples: {}, dim: {}".format(data.shape[0], data.shape[1])) # Construct the training and testing splits. (trainX, testX, trainY, testY) = train_test_split(data, digits.target, test_size=0.25) ic(trainY) # Convert the labels from integers to vectors, one-hot encoding. trainY = LabelBinarizer().fit_transform(trainY) ic(trainY) testY = LabelBinarizer().fit_transform(testY) # Train the network. print("[INFO] training network...") # 64(8*8 pixels)-32-16-10 architecture. nn = NeuralNetwork([trainX.shape[1], 32, 16, 10]) print("[INFO] {}".format(nn)) nn.fit(trainX, trainY, epochs=1000) # Evaluate the trained network. print("[INFO] evaluating network...") predictions = nn.predict(testX)
def testValues(self): with disableColoring(), captureStandardStreams() as (out, err): ic(3, 'asdf') pairs = parseOutputIntoPairs(out, err, 1) assert pairs == [[('3', None), ("'asdf'", None)]]
def test_sum3(): assert (30 == ic(my_sum(0, 5, 20)))
def testColoring(self): with captureStandardStreams() as (out, err): ic({1: 'str'}) # Output should be colored with ANSI control codes. assert hasAnsiEscapeCodes(err.getvalue())
def test_sum4(): assert (78 == ic(my_sum(target=20)))
from icecream import ic start_time = time.time() for i in range(1): # Texto para análise text = pathlib.Path("./textos/bbb.txt").read_text() # Carregar spaCy, idiomas e configurações nlp = spacy.load("pt_core_news_sm") # Rodar documento no sPacy doc = nlp(text) # Acessar dados ic('==================== Análise Gramatical: ====================') for token in doc: if token.pos_ == 'VERB': ic('---') ic(token.orth_, token.pos_) if token.pos_ == 'VERB': ic(token.lemma_) ic('---') # ic('==================== Análise de Raízes: ====================') # for token in doc: # if token.pos_ == 'VERB': # ic(token, token.lemma_) ic('==================== Tempo de Execução: ====================')
def test_sum5(): assert (0 == ic(my_sum(0, 0, 1)))
# convert list of pd.Series then stack it df = (df.set_index(['date', 'id'])['hashtags'].apply( pd.Series).stack().reset_index().drop( 'level_2', axis=1).rename(columns={0: 'hashtag'})) #lowercase! df["hashtag"] = df["hashtag"].str.lower() df["hashtag"] = df["hashtag"].str.replace("'.", "") df["hashtag"] = df["hashtag"].str.replace("’.", "") return df # Aggregate a frequency DF def get_hashtag_frequencies(df): df = hashtag_per_row(df) # Add freq of hashtags by themselves in the dataset tweet_freq = pd.DataFrame({ 'nr_of_hashtags': df.groupby(['hashtag', 'date']).size() }).reset_index() return tweet_freq df = pd.read_csv("../all_vis.csv") df = df.sort_values(by='created_at').reset_index(drop=True) ic(len(df)) freq_hashtags = get_hashtag_frequencies(df) freq_hashtags.to_csv("all_hashtags.csv", index=False)
def test_sum1(): assert (78 == ic(my_sum(3, 5, 20)))
def get_xmltv(): """ Download XMLTV url and store channels and programs in the database. :return: None :return: """ # http://wiki.xmltv.org/index.php/Main_Page/xmltvfileformat.html import urllib2 import gzip import StringIO import xmltv url = cfg.TVGURL # Download XMLTV source out_file_path = url.split("/")[-1][:-3] print('Downloading TV program from: {}'.format(url)) response = urllib2.urlopen(url) compressed_file = StringIO.StringIO(response.read()) decompressed_file = gzip.GzipFile(fileobj=compressed_file) # Extract XMLTV with open(out_file_path, 'w') as outfile: outfile.write(decompressed_file.read()) # Print XMLTV header xmltv_data = xmltv.read_data(open(out_file_path, 'r')) ic(xmltv_data) # Read xml channels xmlchannels = xmltv.read_channels(open(out_file_path, 'r')) print("Got {} channels from XMLTV source".format(len(xmlchannels))) # Drop content of XMLChannel XMLChannel.query.delete() db.session.commit() # Populate XMLChannel with channels from XMLTV source for xc in xmlchannels: xmlchannel = XMLChannel(id=int(xc['id']), label=xc['display-name'][0][0].strip()) db.session.add(xmlchannel) db.session.commit() programs = xmltv.read_programmes(open(out_file_path, 'r')) chunk = 1024 index = 0 for pr in programs: desc = "" try: desc = pr['desc'][0][0] except KeyError: pass a_category = Category.query.filter( Category.name == pr['category'][0][0]).first() if a_category: p = Program(channel=int(pr['channel']), title=pr['title'][0][0], start=duparse(pr['start']), stop=duparse(pr['stop']), desc=desc, category_id=a_category.id) db.session.add(p) else: py = Category(name=pr['category'][0][0]) Program(channel=int(pr['channel']), title=pr['title'][0][0], start=duparse(pr['start']), stop=duparse(pr['stop']), desc=desc, category=py) db.session.add(py) index += 1 if index % chunk == 0: db.session.commit() db.session.commit() categories = [x.name for x in Category.query.all()] ic(u', '.join(categories))
def test_sum2(): assert (63 == ic(my_sum(3, 0, 20)))