def test_eigenvalues(): nx, ny = 32, 32 mesh = firedrake.UnitSquareMesh(nx, ny) x, y = firedrake.SpatialCoordinate(mesh) V = firedrake.VectorFunctionSpace(mesh, family='CG', degree=2) u = interpolate(as_vector((x, 0)), V) Q = firedrake.FunctionSpace(mesh, family='DG', degree=2) ε = sym(grad(u)) Λ1, Λ2 = eigenvalues(ε) λ1 = firedrake.project(Λ1, Q) λ2 = firedrake.project(Λ2, Q) assert norm(λ1 - Constant(1)) < norm(u) / (nx * ny) assert norm(λ2) < norm(u) / (nx * ny)
def sources(self, **kwargs): keys = ("damage", "velocity", "strain_rate", "membrane_stress") D, u, ε, M = itemgetter(*keys)(kwargs) # Increase/decrease damage depending on stress and strain rates ε_1 = eigenvalues(ε)[0] σ_e = sqrt(inner(M, M) - det(M)) ε_h = firedrake.Constant(self.healing_strain_rate) σ_d = firedrake.Constant(self.damage_stress) γ_h = firedrake.Constant(self.healing_rate) γ_d = firedrake.Constant(self.damage_rate) healing = γ_h * min_value(ε_1 - ε_h, 0) fracture = γ_d * conditional(σ_e - σ_d > 0, ε_1, 0.0) * (1 - D) return healing + fracture
def sources(self, **kwargs): keys = ('damage', 'velocity', 'strain_rate', 'membrane_stress') keys_alt = ('D', 'u', 'ε', 'M') D, u, ε, M = get_kwargs_alt(kwargs, keys, keys_alt) # Increase/decrease damage depending on stress and strain rates ε_1 = eigenvalues(ε)[0] σ_e = sqrt(inner(M, M) - det(M)) ε_h = firedrake.Constant(self.healing_strain_rate) σ_d = firedrake.Constant(self.damage_stress) γ_h = firedrake.Constant(self.healing_rate) γ_d = firedrake.Constant(self.damage_rate) healing = γ_h * min_value(ε_1 - ε_h, 0) fracture = γ_d * conditional(σ_e - σ_d > 0, ε_1, 0.) * (1 - D) return healing + fracture
def sources(self, **kwargs): keys = ('damage', 'velocity', 'fluidity') keys_alt = ('D', 'u', 'A') D, u, A = get_kwargs_alt(kwargs, keys, keys_alt) # Increase/decrease damage depending on stress and strain rates ε = sym(grad(u)) ε_1 = eigenvalues(ε)[0] σ = M(ε, A) σ_e = sqrt(inner(σ, σ) - det(σ)) ε_h = firedrake.Constant(self.healing_strain_rate) σ_d = firedrake.Constant(self.damage_stress) γ_h = firedrake.Constant(self.healing_rate) γ_d = firedrake.Constant(self.damage_rate) healing = γ_h * min_value(ε_1 - ε_h, 0) fracture = γ_d * conditional(σ_e - σ_d > 0, ε_1, 0.) * (1 - D) return healing + fracture
def solve(self, dt, D0, u, A, D_inflow=None, **kwargs): r"""Propogate the damage forward by one timestep This function uses a Runge-Kutta scheme to upwind damage (limiting damage diffusion) while sourcing and sinking damage assocaited with crevasse opening/crevasse healing Parameters ---------- dt : float Timestep D0 : firedrake.Function initial damage feild should be discontinuous u : firedrake.Function Ice velocity A : firedrake.Function fluidity parameter D_inflow : firedrake.Function Damage of the upstream ice that advects into the domain Returns ------- D : firedrake.Function Ice damage at `t + dt` """ D_inflow = D_inflow if D_inflow is not None else D0 Q = D0.function_space() dD, φ = firedrake.TrialFunction(Q), firedrake.TestFunction(Q) d = φ * dD * dx D = D0.copy(deepcopy=True) n = firedrake.FacetNormal(Q.mesh()) un = 0.5 * (inner(u, n) + abs(inner(u, n))) L1 = dt * (D * div(φ * u) * dx - φ * max_value(inner(u, n), 0) * D * ds - φ * min_value(inner(u, n), 0) * D_inflow * ds - (φ('+') - φ('-')) * (un('+') * D('+') - un('-') * D('-')) * dS) D1 = firedrake.Function(Q) D2 = firedrake.Function(Q) L2 = firedrake.replace(L1, {D: D1}) L3 = firedrake.replace(L1, {D: D2}) dq = firedrake.Function(Q) # Three-stage strong structure-preserving Runge Kutta (SSPRK3) method params = { 'ksp_type': 'preonly', 'pc_type': 'bjacobi', 'sub_pc_type': 'ilu' } prob1 = firedrake.LinearVariationalProblem(d, L1, dq) solv1 = firedrake.LinearVariationalSolver(prob1, solver_parameters=params) prob2 = firedrake.LinearVariationalProblem(d, L2, dq) solv2 = firedrake.LinearVariationalSolver(prob2, solver_parameters=params) prob3 = firedrake.LinearVariationalProblem(d, L3, dq) solv3 = firedrake.LinearVariationalSolver(prob3, solver_parameters=params) solv1.solve() D1.assign(D + dq) solv2.solve() D2.assign(0.75 * D + 0.25 * (D1 + dq)) solv3.solve() D.assign((1.0 / 3.0) * D + (2.0 / 3.0) * (D2 + dq)) # Increase/decrease damage depending on stress and strain rates ε = sym(grad(u)) ε_1 = eigenvalues(ε)[0] σ = M(ε, A) σ_e = sqrt(inner(σ, σ) - det(σ)) ε_h = firedrake.Constant(self.healing_strain_rate) σ_d = firedrake.Constant(self.damage_stress) γ_h = firedrake.Constant(self.healing_rate) γ_d = firedrake.Constant(self.damage_rate) healing = γ_h * min_value(ε_1 - ε_h, 0) fracture = γ_d * conditional(σ_e - σ_d > 0, ε_1, 0.) * (1 - D) # Clamp damage field to [0, 1] D.project(min_value(max_value(D + dt * (healing + fracture), 0), 1)) return D