示例#1
0
    def get_data(self, b_size, augment=False, standardize=False, repeat=False, num_threads=4, seed=None):
        """ Returns iterators on the dataset along with their initializers.
        :param b_size: batch size
        :param augment: if to perform data augmentation
        :param standardize: if to standardize the input data
        :param repeat: (bool) whether to repeat the input indefinitely
        :param num_threads: for parallel computing
        :param seed: (int or placeholder) seed for the random operations
        :return: train_init, valid_init, input_data, label
        """
        with tf.name_scope('acdc_data'):

            _train_images = tf.constant(self.x_train, dtype=tf.float32)
            _train_masks = tf.constant(self.y_train, dtype=tf.float32)
            _valid_images = tf.constant(self.x_validation, dtype=tf.float32)
            _valid_masks = tf.constant(self.y_validation, dtype=tf.float32)

            train_data = tf.data.Dataset.from_tensor_slices((_train_images, _train_masks))
            valid_data = tf.data.Dataset.from_tensor_slices((_valid_images, _valid_masks))

            train_data = train_data.shuffle(buffer_size=len(self.x_train), seed=seed)

            if standardize:
                print("Data won't be standardized, as they already have been pre-processed.")

            if augment:
                train_data = train_data.map(lambda x, y: self._data_augmentation_ops(x, y),
                                            num_parallel_calls=num_threads)

            seed2 = seed + 1
            train_data = train_data.shuffle(buffer_size=len(self.x_train), seed=seed2)

            if repeat:
                print_yellow_text(' --> Repeat the input indefinitely  = True', sep=False)
                train_data = train_data.repeat()  # Repeat the input indefinitely

            train_data = train_data.batch(b_size, drop_remainder=True)
            valid_data = valid_data.batch(b_size, drop_remainder=True)

            # if len(get_available_gpus()) > 0:
            #     # prefetch data to the GPU
            #     # train_data = train_data.apply(tf.data.experimental.prefetch_to_device("/gpu:0"))
            #     train_data = train_data.apply(tf.data.experimental.copy_to_device("/gpu:0")).prefetch(1)

            iterator = tf.data.Iterator.from_structure(train_data.output_types, train_data.output_shapes)

            _input_data, _output_data = iterator.get_next()
            train_init = iterator.make_initializer(train_data)  # initializer for train_data
            valid_init = iterator.make_initializer(valid_data)  # initializer for test_data

            with tf.name_scope('input_sup'):
                input_data = tf.reshape(_input_data, shape=[-1, self.input_size[0], self.input_size[1], 1])
                input_data = tf.cast(input_data, tf.float32)

            with tf.name_scope('output_sup'):
                output_data = tf.reshape(_output_data, shape=[-1, self.input_size[0], self.input_size[1], 4])
                output_data = tf.cast(output_data, tf.float32)

            return train_init, valid_init, input_data, output_data
示例#2
0
def main():
    print('\nBuilding SUPERVISED sets.')
    build_sup_sets()
    print('\nBuilding UNSUPERVISED sets.')
    build_unsup_sets()
    print('\nBuilding DISCRIMINATOR sets.')
    build_disc_sets()

    print_yellow_text('\nDone.\n', sep=False)
示例#3
0
def main():
    print('\nBuilding SUPERVISED sets.')
    # build_sup_sets()
    print('\nBuilding UNSUPERVISED sets.')
    build_unsup_sets()
    print('\nBuilding DISCRIMINATOR sets.')
    build_disc_sets(
    )  # texture is created from the discriminator dataset, keep the same slice order

    print_yellow_text('\nDone.\n', sep=False)
    def train(self, n_epochs):
        """ The train function alternates between training one epoch and evaluating """
        print(
            "\nStarting network training... Number of epochs to train: \033[94m{0}\033[0m"
            .format(n_epochs))
        print("Tensorboard verbose mode: \033[94m{0}\033[0m".format(
            self.tensorboard_verbose))
        print("Tensorboard dir: \033[94m{0}\033[0m".format(self.graph_dir))
        print(
            "Data augmentation: \033[94m{0}\033[0m, Data standardization: \033[94m{1}\033[0m."
            .format(self.augment, self.standardize))
        utils.safe_mkdir(self.checkpoint_dir)
        utils.safe_mkdir(self.history_log_dir)
        writer = tf.summary.FileWriter(self.graph_dir, tf.get_default_graph())

        # config for the session: allow growth for GPU to avoid OOM when other processes are running
        config = tf.ConfigProto()
        config.gpu_options.allow_growth = True

        with tf.Session(config=config) as sess:
            sess.run(tf.global_variables_initializer())
            sess.run(tf.local_variables_initializer())

            # to continue last training
            saver = tf.train.Saver()
            ckpt = tf.train.get_checkpoint_state(
                os.path.dirname(self.last_checkpoint_dir + '/checkpoint'))
            if ckpt and ckpt.model_checkpoint_path:
                saver.restore(sess, ckpt.model_checkpoint_path)
            else:  # to train the main model from scratch
                # restore AE
                variables = tf.contrib.framework.get_variables_to_restore()
                variables_to_restore = [
                    v for v in variables
                    if v.name.split('/')[0] == 'texture_ae'
                    or v.name.split('/')[0] == 'label_ae'
                ]
                ae_saver = tf.train.Saver(
                    variables_to_restore)  # keep_checkpoint_every_n_hours=2
                ckpt_ae = tf.train.get_checkpoint_state(
                    os.path.dirname(self.ae_checkpoint_dir + '/checkpoint'))
                if ckpt_ae and ckpt_ae.model_checkpoint_path:
                    ae_saver.restore(sess, ckpt_ae.model_checkpoint_path)

            trained_epochs = self.g_epoch.eval(
            )  # global step is also saved in checkpoint
            print(
                "Model already trained for \033[94m{0}\033[0m epochs.".format(
                    trained_epochs))
            t_step = self.g_train_step.eval()  # global step for train
            v_step = self.g_valid_step.eval()  # global step for validation
            test_step = self.g_test_step.eval()  # global step for test

            # Define a caller to call the callbacks
            self.callbacks_kwargs.update({'sess': sess, 'cnn': self})
            caller = tf_callbacks.ChainCallback(callbacks=self.callbacks)
            caller.on_train_begin(training_state=True, **self.callbacks_kwargs)

            # trick to find performance bugs: this will raise an exception if any new node is inadvertently added to the
            # graph. This will ensure that I don't add many times the same node to the graph (which could be expensive):
            tf.get_default_graph().finalize()

            # saving callback:
            self.callbacks_kwargs[
                'es_loss'] = 100  # some random initialization

            for epoch in range(n_epochs):
                ep_str = str(epoch + 1) if (
                    trained_epochs == 0
                ) else '({0}+) '.format(trained_epochs) + str(epoch + 1)
                print('_' * 40 +
                      '\n\033[1;33mEPOCH {0}\033[0m - {1} : '.format(
                          ep_str, self.run_id))
                caller.on_epoch_begin(training_state=True,
                                      **self.callbacks_kwargs)

                global_ep = sess.run(self.g_epoch)
                self.callbacks_kwargs['es_loss'] = sess.run(self.best_val_loss)

                seed = global_ep

                # TRAINING ------------------------------------------
                iterator_init_list = [
                    self.disc_train_init, self.unsup_train_init
                ]
                t_step = self.train_one_epoch(sess, iterator_init_list, writer,
                                              t_step, caller, seed)

                # VALIDATION ------------------------------------------
                if global_ep >= 15 or not (
                    (global_ep + 1) % 5):  # when to evaluate the model
                    iterator_init_list = [
                        self.disc_valid_init, self.unsup_valid_init
                    ]
                    v_step, val_loss = self.eval_once(sess, iterator_init_list,
                                                      writer, v_step, caller)
                    self.callbacks_kwargs['es_loss'] = val_loss
                    sess.run(self.update_best_val_loss,
                             feed_dict={'best_val_loss_value:0': val_loss})

                if self.tensorboard_verbose and (global_ep % 20 == 0):
                    # writing summary for the weights:
                    summary = sess.run(self.weights_summary)
                    writer.add_summary(summary, global_step=t_step)

                try:
                    caller.on_epoch_end(training_state=True,
                                        **self.callbacks_kwargs)
                except EarlyStoppingException:
                    utils.print_yellow_text('\nEarly stopping...\n')
                    break
                except NeedForTestException:
                    # found new best model, save it
                    saver.save(sess, self.checkpoint_dir + '/checkpoint',
                               t_step)

            caller.on_train_end(training_state=True, **self.callbacks_kwargs)

            # end of the training: save the current weights in a new sub-directory
            utils.safe_mkdir(self.checkpoint_dir + '/last_model')
            saver.save(sess, self.checkpoint_dir + '/last_model/checkpoint',
                       t_step)

            # load best model and do a test:
            ckpt = tf.train.get_checkpoint_state(
                os.path.dirname(self.checkpoint_dir + '/checkpoint'))
            if ckpt and ckpt.model_checkpoint_path:
                saver.restore(sess, ckpt.model_checkpoint_path)

            _ = self.test_once(sess,
                               [self.disc_test_init, self.unsup_test_init],
                               writer, test_step, caller)

        writer.close()
示例#5
0
                37, 50, 53, 100, 38, 19, 61, 74, 97, 31, 91, 35, 56, 94, 26,
                69, 46, 59, 4, 89, 71, 6, 52, 43, 45, 63, 93, 14, 98, 88, 21,
                28, 99, 54, 90, 2, 76, 34, 85, 70, 86, 3, 8, 51, 40, 7, 13, 47,
                55, 12, 58, 87, 9, 65, 62, 33, 42, 23, 92, 29, 11, 83, 68, 75,
                67, 16, 48, 66, 20, 15
            ]
        }
    ]
    return splits


if __name__ == '__main__':

    default_data_folder = 'training'

    print_yellow_text('\nSplitting the data in: train, validation, test ...',
                      sep=False)

    # create split
    splits_ids = get_splits()[0]
    subdir_list = [d for d in glob(root + default_data_folder + '/*')]

    dset_list = [
        'train_sup', 'train_disc', 'train_unsup', 'validation', 'test'
    ]

    for dset in dset_list:
        try:
            os.makedirs(root + dset)
        except FileExistsError:
            os.system('rm -rf {0}'.format(root + dset))
            os.makedirs(root + dset)
示例#6
0
    def get_data(self,
                 b_size,
                 augment=False,
                 standardize=False,
                 repeat=False,
                 num_threads=4,
                 seed=None):
        """ Returns iterators on the dataset along with their initializers.
        :param b_size: batch size
        :param augment: if to perform data augmentation
        :param standardize: if to standardize the input data
        :param repeat: (bool) whether to repeat the input indefinitely
        :param num_threads: for parallel computing
        :return: train_init, valid_init, input_data, label
        """
        with tf.name_scope('acdc_data'):

            _train_data = tf.constant(self.x_train_paths)
            _valid_data = tf.constant(self.x_validation_paths)
            train_data = tf.data.Dataset.from_tensor_slices(_train_data)
            valid_data = tf.data.Dataset.from_tensor_slices(_valid_data)

            train_data = train_data.shuffle(buffer_size=len(
                self.x_train_paths),
                                            seed=seed)

            train_data = train_data.map(
                lambda filename: tf.py_func(  # Parse the record into tensors
                    self.data_parser, [filename, standardize, augment],
                    [tf.float32]),
                num_parallel_calls=num_threads)

            valid_data = valid_data.map(
                lambda filename: tf.py_func(  # Parse the record into tensors
                    self.data_parser, [filename, standardize, False],
                    [tf.float32]),
                num_parallel_calls=num_threads)

            # - - - - - - - - - - - - - - - - - - - -

            if augment:
                train_data = train_data.map(self._data_augmentation_ops,
                                            num_parallel_calls=num_threads)
                valid_data = valid_data.map(
                    lambda v: tf.cast(v, dtype=tf.float32),
                    num_parallel_calls=num_threads)

            seed2 = seed + 1
            train_data = train_data.shuffle(buffer_size=len(
                self.x_train_paths),
                                            seed=seed2)

            if repeat:
                print_yellow_text(' --> Repeat the input indefinitely  = True',
                                  sep=False)
                train_data = train_data.repeat(
                )  # Repeat the input indefinitely

            # un-batch first, then batch the data
            train_data = train_data.apply(tf.data.experimental.unbatch())
            valid_data = valid_data.apply(tf.data.experimental.unbatch())

            train_data = train_data.batch(b_size, drop_remainder=True)
            valid_data = valid_data.batch(b_size, drop_remainder=True)

            # if len(get_available_gpus()) > 0:
            #     # prefetch data to the GPU
            #     # train_data = train_data.apply(tf.data.experimental.prefetch_to_device("/gpu:0"))
            #     train_data = train_data.apply(tf.data.experimental.copy_to_device("/gpu:0")).prefetch(1)

            iterator = tf.data.Iterator.from_structure(
                train_data.output_types, train_data.output_shapes)

            _input_data = iterator.get_next()
            train_init = iterator.make_initializer(
                train_data)  # initializer for train_data
            valid_init = iterator.make_initializer(
                valid_data)  # initializer for test_data

            with tf.name_scope('input_unsup'):
                input_data = tf.reshape(
                    _input_data,
                    shape=[-1, self.input_size[0], self.input_size[1], 1])

            with tf.name_scope('output_unsup'):
                output_data = tf.reshape(
                    _input_data,
                    shape=[-1, self.input_size[0], self.input_size[1], 1])

            return train_init, valid_init, input_data, output_data