示例#1
0
    def test_split_return_values_torch(self):
        seq_length_output = numpy.array([10, 5])
        output = torch.ones(seq_length_output.max(), 2, 4)

        with unittest.mock.patch.object(ModularTrainer.logger,
                                        "error") as mock_logger:
            with self.assertRaises(TypeError):
                ModularTrainer._split_return_values(output, seq_length_output,
                                                    None, False)
                mock_logger.assert_called_with(
                    "No best model exists yet. Continue with the current one.")
示例#2
0
    def create_hparams(hparams_string=None, verbose=False):
        """
        Create model hyper parameter container. Parse non default from
        given string.
        """
        hparams = ModularTrainer.create_hparams(hparams_string, verbose=False)

        hparams.add_hparams(
            num_questions=None,
            question_file=None,  # Used to add labels in plot.
            num_coded_sps=60,
            num_baps=1,
            load_sp=True,
            load_lf0=True,
            load_vuv=True,
            load_bap=True,
            sp_type="mcep",
            add_deltas=True,
            synth_load_org_sp=False,
            synth_load_org_lf0=False,
            synth_load_org_vuv=False,
            synth_load_org_bap=False,
            # More available metrics in the Metrics class.
            metrics=[
                Metrics.MCD, Metrics.F0_RMSE, Metrics.VDE,
                Metrics.BAP_distortion
            ])

        if verbose:
            logging.info(hparams.get_debug_string())

        return hparams
示例#3
0
    def test_legacy_string_conversion(self):
        hparams = ModularTrainer.create_hparams()
        num_emb = 3
        emb_dim = 12
        in_dim = 43  # Includes embedding index.
        out_dim = 12
        hparams.add_hparam("f_get_emb_index", [self._f_get_emb_index])
        hparams.model_type = "RNNDYN-{}x{}_EMB_(0, 3, 5)-2_RELU_128-1_Batch" \
            "Norm1dConv1d_18_3-1_BiLSTM_32-1_RNNTANH_8-1_FC_{}".format(
                num_emb, emb_dim, out_dim)
        model = rnn_dyn.convert_legacy_to_config(
            in_dim=(in_dim, ), hparams=hparams).create_model()

        self.assertEqual(torch.Size([128, 42 + emb_dim]),
                         model[0][0].weight.shape)
        self.assertEqual(torch.Size([128, 128]), model[0][2].weight.shape)
        self.assertEqual(nn.BatchNorm1d, type(model[2][0]))
        self.assertEqual(torch.Size([4 * 32, 18 + emb_dim]),
                         model[3].module.weight_ih_l0.shape)
        self.assertEqual('RNN_TANH', model[4].module.mode)
        self.assertEqual(torch.Size([12, 8 + emb_dim]),
                         model[5][0].weight.shape)

        seq_length = torch.tensor((100, 75), dtype=torch.long)
        batch_size = 2
        test_input = torch.ones([seq_length[0], batch_size, in_dim])
        model.init_hidden(batch_size)
        output = model(test_input,
                       seq_lengths_input=seq_length,
                       max_length_inputs=seq_length[0])
        self.assertEqual(torch.Size([seq_length[0], batch_size, out_dim]),
                         output[0].shape)
示例#4
0
    def test_embeddings_everywhere(self):
        hparams = ModularTrainer.create_hparams()
        num_emb = 3
        emb_dim = 12
        in_dim = 43
        out_dim = 12
        hparams.add_hparam("f_get_emb_index", [self._f_get_emb_index])
        hparams.model_type = "RNNDYN-{}x{}_EMB_(-1)-3_RELU_128-2_BiLSTM_32-1_FC_12".format(
            num_emb, emb_dim)
        model = rnn_dyn.convert_legacy_to_config(
            in_dim=(in_dim, ), hparams=hparams).create_model()

        self.assertEqual(1, len(model.emb_groups))
        self.assertEqual(torch.Size([num_emb, emb_dim]),
                         model.emb_groups["0"].weight.shape)
        self.assertEqual(torch.Size([128, in_dim - 1 + emb_dim]),
                         model[0][0].weight.shape)
        self.assertEqual(torch.Size([12, 64 + emb_dim]),
                         model[2][0].weight.shape)

        self.assertEqual(torch.Size([32 * 4, 128 + emb_dim]),
                         model[1].weight_ih_l0.shape)
        self.assertEqual(torch.Size([32 * 4, 32 * 2]),
                         model[1].weight_ih_l1_reverse.shape)
        pass
示例#5
0
    def test_input_to_str_list(self):
        # Tuple input but elements are not strings.
        out = ModularTrainer._input_to_str_list((121, 122))
        self.assertEqual(["121", "122"], out)

        # Valid path to file id list.
        out = ModularTrainer._input_to_str_list(
            os.path.join("integration", "fixtures", "file_id_list.txt"))
        self.assertEqual(TestModularTrainer._get_id_list(), out)

        # Single input id.
        out = ModularTrainer._input_to_str_list("121")
        self.assertEqual(["121"], out)

        # Wrong input.
        with self.assertRaises(ValueError):
            ModularTrainer._input_to_str_list(numpy.array([1, 2]))
示例#6
0
 def create_hparams(hparams_string: os.PathLike = None,
                    verbose: bool = False):
     hparams = ModularTrainer.create_hparams(hparams_string=hparams_string,
                                             verbose=verbose)
     hparams.add_hparams(class_pred_name="class_pred",
                         class_true_name="class_true",
                         num_classes=-1,
                         class_names=None)
     return hparams
示例#7
0
    def test_nonlins(self):
        hparams = ModularTrainer.create_hparams()
        in_dim = 42
        out_dim = 12
        # hparams.model_type = "RNNDYN-1_FC_16-1_LIN_18-1_linear_20-1_RELU_22-1_TANH_24-1_FC_{}".format(out_dim)
        model_config = rnn_dyn.Config(
            in_dim=in_dim,
            batch_first=True,
            layer_configs=[
                rnn_dyn.Config.LayerConfig(layer_type="FC", out_dim=16),
                rnn_dyn.Config.LayerConfig(layer_type="LIN", out_dim=18),
                rnn_dyn.Config.LayerConfig(layer_type="linear", out_dim=20),
                rnn_dyn.Config.LayerConfig(layer_type="Linear",
                                           num_layers=2,
                                           out_dim=22,
                                           nonlin="ReLU"),
                rnn_dyn.Config.LayerConfig(layer_type="Linear", out_dim=22),
                rnn_dyn.Config.LayerConfig(layer_type="SELU", inplace=True),
                rnn_dyn.Config.LayerConfig(layer_type="Linear",
                                           out_dim=out_dim),
                rnn_dyn.Config.LayerConfig(layer_type="Conv1d",
                                           kernel_size=5,
                                           nonlin="ReLU",
                                           out_dim=out_dim)
            ],
            hparams=hparams)
        model = model_config.create_model()
        # print(list(model.modules()))
        # model = ModelFactory.create(hparams.model_type, (in_dim,), out_dim, hparams)

        for layer_idx in range(3):
            num_sublayers = len(model[layer_idx].module)
            if num_sublayers > 1:
                self.assertEqual(
                    1, num_sublayers,
                    "Layer {} should not have a non linearity but has {}.".
                    format(layer_idx, type(model[layer_idx].module[1])))
        seq_layer = model[3].module
        self.assertEqual(
            torch.nn.ReLU, type(seq_layer[1]),
            "Layer {} should have a non-linearity {} but has {}.".format(
                3, torch.nn.ReLU, type(seq_layer[1])))
        self.assertEqual(
            torch.nn.ReLU, type(seq_layer[3]),
            "Layer {} should have a non-linearity {} but has {}.".format(
                3, torch.nn.ReLU, type(seq_layer[1])))
        layer = model[5].module[0]
        self.assertEqual(
            torch.nn.SELU, type(layer),
            "Layer {} should be {} but is {}.".format(5, torch.nn.SELU,
                                                      type(layer)))
        seq_layer = model[7].module
        self.assertEqual(
            torch.nn.ReLU, type(seq_layer[1]),
            "Layer {} should have a non-linearity {} but has {}.".format(
                3, torch.nn.ReLU, type(seq_layer[1])))
示例#8
0
    def test_conv1d(self):
        hparams = ModularTrainer.create_hparams()
        in_dim = 40
        out_dim = 12
        hparams.model_type = "RNNDYN-" + "-".join(
            ["1_BatchNorm1dConv1d_128_5"] * 2) + "-1_BiLSTM_8-1_FC_12"
        model = rnn_dyn.convert_legacy_to_config(
            in_dim=in_dim, hparams=hparams).create_model()
        #  ModelFactory.create(hparams.model_type, (in_dim,), out_dim, hparams)

        self.assertEqual(in_dim, model[0][0].in_channels)
        self.assertEqual(128, model[0][0].out_channels)
        self.assertEqual((5, ), model[0][0].kernel_size)
        for idx in range(1, 4, 2):  # Test for batch norm after each layer.
            self.assertEqual(torch.nn.BatchNorm1d, type(model[idx][0]))

        seq_length = torch.tensor((100, 75), dtype=torch.long)
        batch_size = 2
        test_input = torch.ones([seq_length[0], batch_size, in_dim])
        model.init_hidden(batch_size)
        output = model(test_input,
                       seq_lengths_input=seq_length,
                       max_length_inputs=seq_length[0])
        self.assertEqual(torch.Size([seq_length[0], batch_size, out_dim]),
                         output[0].shape)

        hparams.model_type = "RNNDYN-2_Conv1d_128_5x1-1_FC_12"
        model = rnn_dyn.convert_legacy_to_config(
            in_dim=in_dim, hparams=hparams).create_model()
        self.assertEqual((5, 1), model[0][0].kernel_size)

        hparams.model_type = "RNNDYN-2_Conv1d_128_5x1_s2_p5_d3_g4-1_FC_12"
        model = rnn_dyn.convert_legacy_to_config(
            in_dim=in_dim, hparams=hparams).create_model()
        self.assertEqual((2, ), model[0][0].stride)
        self.assertEqual((5, ), model[0][0].padding)
        self.assertEqual((3, ), model[0][0].dilation)
        self.assertEqual(4, model[0][0].groups)

        hparams.model_type = "RNNDYN-2_Conv1d_64_3_p0_s2"
        model = rnn_dyn.convert_legacy_to_config(
            in_dim=in_dim, hparams=hparams).create_model()
        model.init_hidden(batch_size)
        output, kwargs = model(test_input,
                               seq_lengths_input=seq_length,
                               max_length_inputs=seq_length[0])

        def new_lengths(x):
            return (x - 3) // 2 + 1

        expected_seq_lengths = new_lengths(new_lengths(seq_length))
        expected_max_length = new_lengths(new_lengths(seq_length.max()))
        self.assertTrue(
            (expected_seq_lengths == kwargs["seq_lengths_input"]).all())
        self.assertTrue(
            (expected_max_length == kwargs["max_length_inputs"]).all())
示例#9
0
    def create_hparams(hparams_string=None, verbose=False):
        hparams = ModularTrainer.create_hparams(hparams_string, verbose=False)
        hparams.add_hparams(  # exclude_begin_and_end_silence=False,
            # htk_min_phoneme_length=50000,
            # phoneme_label_type="HTK full",  # Specifies the format in which the .lab files are stored.
            #                                 # Refer to PhonemeLabelGen.load_sample for a list of types.
            metrics=[Metrics.Dur_RMSE, Metrics.Dur_pearson])

        if verbose:
            logging.info(hparams.get_debug_string())

        return hparams
示例#10
0
    def plot_mgc(plotter: DataPlotter,
                 plotter_config: DataPlotter.Config,
                 grid_indices: List[int],
                 id_name: str,
                 features: np.ndarray,
                 synth_fs: int,
                 spec_slice: slice = None,
                 labels: Tuple[str, str] = (None, None),
                 xlim: Union[str, Tuple[float, float]] = (None, None),
                 ylim: Union[str, Tuple[float, float]] = (None, None),
                 *args,
                 **kwargs):

        import librosa
        amp_sp = np.absolute(AudioProcessing.mcep_to_amp_sp(
            features, synth_fs))
        amp_sp_db = librosa.amplitude_to_db(amp_sp, top_db=None)

        ModularTrainer.plot_specshow(plotter, plotter_config, grid_indices,
                                     id_name, amp_sp_db, spec_slice, labels,
                                     xlim, ylim, *args, **kwargs)
示例#11
0
    def test_save_load_equality(self):
        hparams = ModularTrainer.create_hparams()
        hparams.optimiser_type = "Adam"
        hparams.optimiser_args["lr"] = 0.1
        # Add function name to path.
        out_dir = os.path.join(self.out_dir, "test_save_load_equality")
        model_path = os.path.join(out_dir, "test_model")

        # Create a new model, run the optimiser once to obtain a state, and save everything.
        in_dim, out_dim = 10, 4
        total_epochs = 10
        model_handler = ModularModelHandlerPyTorch()
        model_handler.model = rnn_dyn.Config(in_dim=in_dim, layer_configs=[
            rnn_dyn.Config.LayerConfig(layer_type="Linear", out_dim=out_dim)
        ]).create_model()
        model_handler.set_optimiser(hparams)

        seq_length = torch.tensor((10, 7), dtype=torch.long)
        batch_size = 2
        test_input = torch.ones([seq_length[0], batch_size, in_dim])
        model_handler.model.init_hidden(batch_size)
        output = model_handler.model(test_input, seq_lengths_input=seq_length,
                                     max_length_inputs=seq_length.max())[0]
        output.mean().backward()

        model_handler.optimiser.step()
        model_handler.save_checkpoint(epoch=total_epochs, model_path=model_path)

        # Create a new model handler and test load save.
        model_handler_copy = ModularModelHandlerPyTorch()
        model_handler_copy.load_checkpoint(
            hparams,
            model_path=model_path,
            load_optimiser=True,
            epoch=total_epochs,
            verbose=False)

        zip_params = zip(model_handler.model.parameters(),
                         model_handler_copy.model.parameters())
        self.assertTrue(all([(x == x_copy).all() for x, x_copy in zip_params]),
                        "Loaded and saved models are not the same.")
        current_opt_state = model_handler.optimiser.state_dict()["state"]
        copy_opt_state = model_handler_copy.optimiser.state_dict()["state"]
        self.assertTrue(equal_iterable(current_opt_state, copy_opt_state),
                        "Loaded and saved optimisers are not the same.")

        shutil.rmtree(out_dir)
示例#12
0
    def test_split_return_values(self):
        seq_length_output = numpy.array([10, 6, 8])
        batch_size = 3
        feature_dim = 50
        output = numpy.empty(
            (seq_length_output.max(), batch_size, feature_dim))
        hidden1 = numpy.empty((seq_length_output.max(), batch_size, 2))
        hidden2 = numpy.empty((seq_length_output.max(), batch_size, 4))
        for idx in range(batch_size):
            output[:, idx] = idx
            hidden1[:, idx] = idx * 10
            hidden2[:, idx] = idx * 100
        hidden = (hidden1, hidden2)
        batch = (output, hidden)

        split_batch = ModularTrainer._split_return_values(
            batch, seq_length_output, None, False)

        for idx in range(batch_size):
            b = split_batch[idx]
            out = b[0]
            h = b[1]
            h1 = h[0]
            h2 = h[1]

            self.assertTrue(
                (out == idx).all(),
                msg=
                "Output of batch {} is wrong, expected was all values being {}."
                .format(idx, idx))
            self.assertTrue(
                (h1 == idx * 10).all(),
                msg=
                "Hidden1 of batch {} is wrong, expected was all values being {}."
                .format(idx, idx * 10))
            self.assertTrue(
                (h2 == idx * 100).all(),
                msg=
                "Hidden2 of batch {} is wrong, expected was all values being {}."
                .format(idx, idx * 100))
示例#13
0
    def create_hparams(hparams_string=None, verbose=False):
        """Create model hyper-parameters. Parse non-default from given string."""
        hparams = ModularTrainer.create_hparams(hparams_string, verbose=False)
        hparams.synth_vocoder = "raw"

        hparams.add_hparams(
            batch_first=True,
            frame_rate_output_Hz=16000,
            bit_depth=16,
            silence_threshold_quantized=
            None,  # Beginning and end of audio below the threshold are trimmed.
            teacher_forcing_in_test=True,
            ema_decay=0.9999,
            mu=255,

            # Model parameters.
            input_type=WaveNetWrapper.Config.INPUT_TYPE_MULAW,
            # hinge_regularizer=True,  # Only used in MoL prediction (input_type="raw").
            # log_scale_min=float(np.log(1e-14)),  # Only used for mixture of logistic distributions.
            # quantize_channels=256
        )  # 256 for input type mulaw-quantize, otherwise 65536
        # if hparams.input_type == "mulaw-quantize":
        #     hparams.add_hparam("out_channels", hparams.quantize_channels)
        # else:
        #     hparams.add_hparam("out_channels", 10 * 3)  # num_mixtures * 3 (pi, mean, log_scale)

        hparams.add_hparams(
            # layers=24,  # 20
            # stacks=4,  # 2
            # residual_channels=512,
            # gate_channels=512,
            # skip_out_channels=256,
            # dropout=1 - 0.95,
            # kernel_size=3,
            # weight_normalization=True,
            use_cond=True,  # Determines if conditioning is used.
            # cin_channels=63,
            # upsample_conditional_features=False,
            # upsample_scales=[
            #     5,
            #     4,
            #     2
            # ]
        )
        if hparams.has_value("upsample_conditional_features"):
            hparams.len_in_out_multiplier = reduce(mul,
                                                   hparams.upsample_scales, 1)
        else:
            hparams.len_in_out_multiplier = 1

        hparams.add_hparams(
            # freq_axis_kernel_size=3,
            # gin_channels=-1,
            # n_speakers=1,
            # use_speaker_embedding=False,
            sp_type="mfbanks",
            load_sp=True,
            load_lf0=False,
            load_vuv=False,
            load_bap=False)

        if verbose:
            logging.info(hparams.get_debug_string())

        return hparams
示例#14
0
    def test_embeddings(self):
        hparams = ModularTrainer.create_hparams()
        num_emb = 3
        emb_dim = 12
        in_dim = 42  # Contains the embedding index.
        out_dim = 12
        model_config = rnn_dyn.Config(
            in_dim=in_dim,
            layer_configs=[
                rnn_dyn.Config.LayerConfig(layer_type="FC",
                                           out_dim=128,
                                           num_layers=2,
                                           nonlin="relu"),
                rnn_dyn.Config.LayerConfig(layer_type="FC",
                                           out_dim=128,
                                           num_layers=3,
                                           nonlin="tanh"),
                rnn_dyn.Config.LayerConfig(layer_type="LSTM",
                                           out_dim=32,
                                           num_layers=3,
                                           bidirectional=True),
                rnn_dyn.Config.LayerConfig(layer_type="FC", out_dim=out_dim)
            ],
            emb_configs=[
                rnn_dyn.Config.EmbeddingConfig(
                    embedding_dim=emb_dim,
                    name="emb1",
                    num_embedding=num_emb,
                    affected_layer_group_indices=(0, 2, 3))
            ])
        model = model_config.create_model()
        hparams.add_hparam("f_get_emb_index", [self._f_get_emb_index])

        self.assertEqual(1, len(model.emb_groups))
        self.assertEqual(torch.Size([num_emb, emb_dim]),
                         model.emb_groups["emb1"].weight.shape)
        self.assertEqual(torch.Size([128, in_dim + emb_dim]),
                         model[0][0].weight.shape)
        self.assertEqual(torch.Size([128, 128]), model[0][2].weight.shape)
        self.assertEqual(torch.Size([128, 128]), model[1][0].weight.shape)
        self.assertEqual(torch.nn.Tanh, type(model[1][1]))

        self.assertEqual(torch.Size([32 * 4, 128 + emb_dim]),
                         model[2].weight_ih_l0.shape)
        self.assertEqual(torch.Size([32 * 4, 32 * 2]),
                         model[2].weight_ih_l2_reverse.shape)

        seq_length = torch.tensor((100, 75), dtype=torch.long)
        batch_size = 2
        test_input = torch.ones([batch_size, seq_length[0], in_dim])
        test_input_emb = torch.ones([batch_size, seq_length[0], 1])
        model.init_hidden(batch_size)
        output = model(test_input,
                       test_input_emb,
                       seq_lengths_input=seq_length,
                       max_length_inputs=seq_length[0])
        self.assertEqual(torch.Size([batch_size, seq_length[0], out_dim]),
                         output[0].shape)

        seq_length = torch.tensor((100, ), dtype=torch.long)
        batch_size = 1
        test_input = torch.ones([batch_size, seq_length[0], in_dim])
        test_input_emb = torch.ones([batch_size, seq_length[0], 1])
        model.init_hidden(batch_size)
        output = model(test_input,
                       test_input_emb,
                       seq_lengths_input=seq_length,
                       max_length_inputs=seq_length[0])
        self.assertEqual(torch.Size([batch_size, seq_length[0], out_dim]),
                         output[0].shape)