def preprocess(): WIDTH = 484 HEIGHT = 240 ENSEMBLE_N = 3 # GET COLOR ENCODING AND ITS INDEX MAPPING colors = loadmat('../data/color150.mat')['colors'] root = '..' names = {} with open('../data/object150_info.csv') as f: reader = csv.reader(f) next(reader) for row in reader: names[int(row[0])] = row[5].split(";")[0] idx_map = create_idx_group() colors, names = edit_colors_names_group(colors, names) # SETUP MODEL cfg_path = os.path.join('..', 'config', 'ade20k-mobilenetv2dilated-c1_deepsup.yaml') #cfg_path="config/ade20k-resnet18dilated-ppm_deepsup.yaml" model = setup_model(cfg_path, root, gpu=0) model.eval() # GET DATA AND PROCESS IMAGE data = np.load(os.path.join('..', 'test_set', 'cls1_rgb.npy')) data = data[:, :, ::-1] img = ImageLoad_cv2(data, WIDTH, HEIGHT, ENSEMBLE_N, True) # MODEL FEED predictions = predict(model, img, ENSEMBLE_N, gpu=0, is_silent=False) return predictions, colors, names, idx_map
def prepare_idx_map(self): self.idx_map = create_idx_group()
if __name__ == '__main__': #Define the color dict import matplotlib.pyplot as plt WIDTH = 484 HEIGHT = 240 RESIZE_N = 2 IS_SILENT = True colors = loadmat('data/color150.mat')['colors'] root = '' names = {} with open('data/object150_info.csv') as f: reader = csv.reader(f) next(reader) for row in reader: names[int(row[0])] = row[5].split(";")[0] idx_map = create_idx_group() colors, names = edit_colors_names_group(colors, names) #take cls.npy as an example data = np.load(os.path.join('test_set', 'cls1_rgb.npy')) data = data[:, :, ::-1] cfg_path = os.path.join('config', 'ade20k-mobilenetv2dilated-c1_deepsup.yaml') #cfg_path="config/ade20k-resnet18dilated-ppm_deepsup.yaml" model = setup_model(cfg_path, root, gpu=0) model.eval() for i in range(5): torch.cuda.synchronize() start = time.time() img = ImageLoad_cv2(data, WIDTH, HEIGHT, RESIZE_N, is_silent=IS_SILENT) predictions = predict(model, img, RESIZE_N, gpu=0, is_silent=IS_SILENT)