示例#1
0
    def test_match_run_on_every_rule(self):
        mocked_rules = [rule(True)(mock.MagicMock(return_value=Token("asd")))
                        ] * 10
        pipeline = RuleBasedCore(self.person_date_relation, self._candidates,
                                 mocked_rules)
        pipeline.start()

        for mock_rule in mocked_rules:
            self.assertTrue(mock_rule.called)
            Subject, Object = mock_rule.call_args[0]
            self.assertIsInstance(Subject, Pattern)
示例#2
0
    def test_rule_that_not_matches(self):
        @rule(True)
        def test_rule(Subject, Object):
            return Subject + Object + Token("something here")

        pipeline = RuleBasedCore(self.person_date_relation, self._candidates,
                                 [test_rule])
        pipeline.start()
        facts = pipeline.known_facts()
        candidate = self._candidates[0]
        self.assertFalse(facts[candidate])
示例#3
0
    def test_rule_with_negative_answer(self):
        @rule(False)
        def test_rule(Subject, Object):
            anything = Question(Star(Any()))
            return Subject + Token("(") + Object + Token("-") + anything

        pipeline = RuleBasedCore(self.person_date_relation, self._candidates,
                                 [test_rule])
        pipeline.start()
        facts = pipeline.known_facts()
        candidate = self._candidates[0]
        self.assertFalse(facts[candidate])
示例#4
0
    def test_rule_that_matches(self):
        @rule(True)
        def test_rule(Subject, Object):
            anything = Question(Star(Any()))
            return Subject + Token("(") + Object + Token("-") + anything

        pipeline = RuleBasedCore(self.person_date_relation, self._candidates,
                                 [test_rule])
        pipeline.start()
        facts = pipeline.known_facts()
        candidate = self._candidates[0]
        self.assertTrue(facts[candidate])
示例#5
0
    def __call__(self, config):
        # Prepare data
        if self.data is None or self.relname != config["relation"]:
            self.relname = config["relation"]
            self.relation = iepy.data.models.Relation.objects.get(
                name=config["relation"])

            candidates = CEM.candidates_for_relation(self.relation)
            self.data = CEM.labels_for(self.relation, candidates,
                                       CEM.conflict_resolution_newest_wins)
            self.evidences = []
            self.labels = []
            for evidence, label in self.data.items():
                if label is not None:
                    self.labels.append(label)
                    self.evidences.append(evidence)

        if not self.data:
            raise NotEnoughLabeledData(
                "There is no labeled data for training!")

        result = {
            "dataset_size": len(self.data),
            "start_time": time.time(),
        }

        # Load rules in the config
        if config["rules"] == "<all>":
            rules = self.rules.values()
        else:
            for rule_name in config["rules"]:
                if rule_name not in self.rules.keys():
                    raise RuleNotFound(rule_name)
            rules = [
                rule for rule_name, rule in self.rules.items()
                if rule_name in config["rules"]
            ]

        # Run the rule based pipeline
        pipeline = RuleBasedCore(self.relation, self.evidences, rules)
        pipeline.start()
        matched = pipeline.known_facts()
        predicted_labels = [e in matched for e in self.evidences]

        # Evaluate prediction
        result.update(
            result_dict_from_predictions(self.evidences, self.labels,
                                         predicted_labels))

        return result
示例#6
0
    def test_rule_priority(self):

        matcher = lambda *args: True
        not_matcher = lambda *args: None

        rule_should_run = rule(True, priority=1)(
            mock.MagicMock(return_value=matcher))
        rule_should_not_run = rule(True, priority=0)(
            mock.MagicMock(return_value=not_matcher))

        pipeline = RuleBasedCore(self.person_date_relation, self._candidates,
                                 [rule_should_not_run, rule_should_run])
        pipeline.start()
        # All rules are compiled on start
        self.assertTrue(rule_should_run.called)
        self.assertTrue(rule_should_not_run.called)
        pipeline.process()
        import refo
        with mock.patch.object(refo, 'match') as fake_refo_match:
            fake_refo_match.side_effect = lambda regex, evidence: regex()
            pipeline.predict()
            self.assertEqual(fake_refo_match.call_count, len(self._candidates))
            # check that on every call, the called is rule_match
            for c_args in fake_refo_match.call_args_list:
                args, kwargs = c_args
                self.assertEqual(args[0], matcher)
示例#7
0
    def test_rule_priority(self):
        def rule_match(Subject, Object):
            anything = Question(Star(Any()))
            return Subject + Token("(") + Object + Token("-") + anything

        rule_should_run = rule(True, priority=1)(
            mock.MagicMock(side_effect=rule_match))
        rule_should_not_run = rule(True, priority=0)(
            mock.MagicMock(side_effect=rule_match))

        pipeline = RuleBasedCore(self.person_date_relation, self._candidates,
                                 [rule_should_not_run, rule_should_run])
        pipeline.start()
        self.assertTrue(rule_should_run.called)
        self.assertFalse(rule_should_not_run.called)
示例#8
0
    def test_rule_priority(self):

        matcher = lambda *args: True
        not_matcher = lambda *args: None

        rule_should_run = rule(True, priority=1)(mock.MagicMock(return_value=matcher))
        rule_should_not_run = rule(True, priority=0)(
            mock.MagicMock(return_value=not_matcher))

        pipeline = RuleBasedCore(self.person_date_relation,
                                 [rule_should_not_run, rule_should_run])
        pipeline.start()
        # All rules are compiled on start
        self.assertTrue(rule_should_run.called)
        self.assertTrue(rule_should_not_run.called)
        pipeline.process()
        import refo
        with mock.patch.object(refo, 'match') as fake_refo_match:
            fake_refo_match.side_effect = lambda regex, evidence: regex()
            pipeline.predict(self._candidates)
            self.assertEqual(fake_refo_match.call_count, len(self._candidates))
            # check that on every call, the called is rule_match
            for c_args in fake_refo_match.call_args_list:
                args, kwargs = c_args
                self.assertEqual(args[0], matcher)
示例#9
0
 def test_empty_rules(self):
     pipeline = RuleBasedCore(self.person_date_relation, self._candidates,
                              [])
     pipeline.start()
     pipeline.process()
     facts = pipeline.predict()
     self.assertEqual(len([x for x in facts if facts[x]]), 0)
示例#10
0
def run_from_command_line():
    logging.basicConfig(level=logging.INFO, format='%(message)s')

    try:
        relation_name = iepy.instance.rules.RELATION
    except AttributeError:
        logging.error("RELATION not defined in rules file")
        sys.exit(1)

    try:
        relation = models.Relation.objects.get(name=relation_name)
    except ObjectDoesNotExist:
        logging.error("Relation {!r} not found".format(relation_name))
        sys.exit(1)

    # Load rules
    rules = load_rules()

    # Load evidences
    evidences = CandidateEvidenceManager.candidates_for_relation(relation)

    # Run the pipeline
    iextractor = RuleBasedCore(relation, evidences, rules)
    iextractor.start()
    iextractor.process()
    predictions = iextractor.predict()
    output.dump_output_loop(predictions)
示例#11
0
def run_from_command_line():
    logging.basicConfig(level=logging.INFO, format='%(message)s')

    try:
        relation_name = iepy.instance.rules.RELATION
    except AttributeError:
        logging.error("RELATION not defined in rules file")
        sys.exit(1)

    try:
        relation = models.Relation.objects.get(name=relation_name)
    except ObjectDoesNotExist:
        logging.error("Relation {!r} not found".format(relation_name))
        sys.exit(1)

    # Load rules
    rules = load_rules()

    # Load evidences
    evidences = CandidateEvidenceManager.candidates_for_relation(relation)

    # Run the pipeline
    iextractor = RuleBasedCore(relation, rules)
    iextractor.start()
    iextractor.process()
    predictions = iextractor.predict(evidences)
    output.dump_output_loop(predictions)
示例#12
0
 def test_empty_rules(self):
     pipeline = RuleBasedCore(self.person_date_relation, self._candidates,
                               [])
     pipeline.start()
     pipeline.process()
     facts = pipeline.predict()
     self.assertEqual(len([x for x in facts if facts[x]]), 0)
示例#13
0
    def test_match_run_on_every_rule(self):
        mocked_rules = [
            rule(True)(mock.MagicMock(return_value=Token("asd")))
        ] * 10
        pipeline = RuleBasedCore(self.person_date_relation, mocked_rules)
        pipeline.start()
        pipeline.process()
        pipeline.predict(self._candidates)

        for mock_rule in mocked_rules:
            self.assertTrue(mock_rule.called)
            Subject, Object = mock_rule.call_args[0]
            self.assertIsInstance(Subject, Pattern)
示例#14
0
    def test_rule_with_negative_answer(self):
        @rule(False)
        def test_rule(Subject, Object):
            anything = Question(Star(Any()))
            return Subject + Token("(") + Object + Token("-") + anything

        pipeline = RuleBasedCore(self.person_date_relation, [test_rule])
        pipeline.start()
        pipeline.process()
        facts = pipeline.predict(self._candidates)
        candidate = self._candidates[0]
        self.assertFalse(facts[candidate])
示例#15
0
    def test_rule_that_not_matches(self):

        @rule(True)
        def test_rule(Subject, Object):
            return Subject + Object + Token("something here")

        pipeline = RuleBasedCore(self.person_date_relation, [test_rule])
        pipeline.start()
        pipeline.process()
        facts = pipeline.predict(self._candidates)
        candidate = self._candidates[0]
        self.assertFalse(facts[candidate])
示例#16
0
    def test_rule_priority(self):

        def rule_match(Subject, Object):
            anything = Question(Star(Any()))
            return Subject + Token("(") + Object + Token("-") + anything

        rule_should_run = rule(True, priority=1)(mock.MagicMock(side_effect=rule_match))
        rule_should_not_run = rule(True, priority=0)(mock.MagicMock(side_effect=rule_match))

        pipeline = RuleBasedCore(self.person_date_relation, self._candidates,
                                  [rule_should_not_run, rule_should_run])
        pipeline.start()
        pipeline.process()
        pipeline.predict()
        self.assertTrue(rule_should_run.called)
        self.assertFalse(rule_should_not_run.called)
示例#17
0
    def test_rule_that_matches(self):

        @rule(True)
        def test_rule(Subject, Object):
            anything = Question(Star(Any()))
            return Subject + Token("(") + Object + Token("-") + anything

        pipeline = RuleBasedCore(self.person_date_relation, [test_rule])
        pipeline.start()
        pipeline.process()
        facts = pipeline.predict(self._candidates)
        candidate = self._candidates[0]
        self.assertTrue(facts[candidate])
示例#18
0
if __name__ == u'__main__':
    logging.basicConfig(level=logging.INFO, format='%(message)s')
    opts = docopt(__doc__, version=iepy.__version__)

    try:
        relation = rules.RELATION
    except AttributeError:
        logging.error("RELATION not defined in rules file")
        sys.exit(1)

    relation = models.Relation.objects.get(name=rules.RELATION)

    # Load rules
    rules = []
    for attr_name in dir(rules):
        attr = getattr(rules, attr_name)
        if hasattr(attr, '__call__'):  # is callable
            if hasattr(attr, "is_rule") and attr.is_rule:
                rules.append(attr)

    # Load evidences
    evidences = CandidateEvidenceManager.candidates_for_relation(relation)

    # Run the pipeline
    iextractor = RuleBasedCore(relation, evidences, rules)
    iextractor.start()
    iextractor.process()
    predictions = iextractor.predict()
    output.dump_output_loop(predictions)
示例#19
0
 def test_empty_rules(self):
     pipeline = RuleBasedCore(self.person_date_relation, self._candidates,
                              [])
     pipeline.start()
     facts = pipeline.known_facts()
     self.assertEqual(len(facts), 0)
示例#20
0
from iepy.extraction.rules_core import RuleBasedCore
from iepy.data import models
from iepy.data.db import CandidateEvidenceManager

import rules

if __name__ == u'__main__':
    logging.basicConfig(
        level=logging.DEBUG,
        format="%(asctime)s - %(name)s - %(levelname)s - %(message)s")

    relation = models.Relation.objects.get(name=rules.RELATION)

    # Load rules
    rules = []
    for attr_name in dir(rules):
        attr = getattr(rules, attr_name)
        if hasattr(attr, '__call__'):  # is callable
            if hasattr(attr, "is_rule") and attr.is_rule:
                rules.append(attr)

    # Load evidences
    evidences = CandidateEvidenceManager.candidates_for_relation(relation)

    # Run the pipeline
    iextractor = RuleBasedCore(relation, evidences, rules)
    iextractor.start()
    facts = iextractor.known_facts()
    print(facts)