def test_zero_gt():
    a = np.random.randn(4)
    ground_truth = np.zeros(4)

    m = MeanNormalizedBias()

    with pytest.raises(NotComputableError, match=r"The ground truth has 0."):
        m.update((torch.from_numpy(a), torch.from_numpy(ground_truth)))
示例#2
0
def test_wrong_input_shapes():
    m = MeanNormalizedBias()

    with pytest.raises(
            ValueError,
            match=r"Input data shapes should be the same, but given"):
        m.update((torch.rand(4), torch.rand(4, 1)))

    with pytest.raises(
            ValueError,
            match=r"Input data shapes should be the same, but given"):
        m.update((torch.rand(4, 1), torch.rand(4, )))
def test_mean_error():
    a = np.random.randn(4)
    b = np.random.randn(4)
    c = np.random.randn(4)
    d = np.random.randn(4)
    ground_truth = np.random.randn(4)

    m = MeanNormalizedBias()

    m.update((torch.from_numpy(a), torch.from_numpy(ground_truth)))
    np_sum = ((ground_truth - a) / ground_truth).sum()
    np_len = len(a)
    np_ans = np_sum / np_len
    assert m.compute() == pytest.approx(np_ans)

    m.update((torch.from_numpy(b), torch.from_numpy(ground_truth)))
    np_sum += ((ground_truth - b) / ground_truth).sum()
    np_len += len(b)
    np_ans = np_sum / np_len
    assert m.compute() == pytest.approx(np_ans)

    m.update((torch.from_numpy(c), torch.from_numpy(ground_truth)))
    np_sum += ((ground_truth - c) / ground_truth).sum()
    np_len += len(c)
    np_ans = np_sum / np_len
    assert m.compute() == pytest.approx(np_ans)

    m.update((torch.from_numpy(d), torch.from_numpy(ground_truth)))
    np_sum += ((ground_truth - d) / ground_truth).sum()
    np_len += len(d)
    np_ans = np_sum / np_len
    assert m.compute() == pytest.approx(np_ans)
示例#4
0
def test_wrong_input_shapes():
    m = MeanNormalizedBias()

    with pytest.raises(ValueError):
        m.update((torch.rand(4, 1, 2), torch.rand(4, 1)))

    with pytest.raises(ValueError):
        m.update((torch.rand(4, 1), torch.rand(4, 1, 2)))

    with pytest.raises(ValueError):
        m.update((torch.rand(4, 1, 2), torch.rand(4, )))

    with pytest.raises(ValueError):
        m.update((torch.rand(4, ), torch.rand(4, 1, 2)))
示例#5
0
    def _test(metric_device):
        metric_device = torch.device(metric_device)
        m = MeanNormalizedBias(device=metric_device)
        torch.manual_seed(10 + rank)

        y_pred = torch.randint(1, 11, size=(10, ), device=device).float()
        y = torch.randint(1, 11, size=(10, ), device=device).float()

        m.update((y_pred, y))

        # gather y_pred, y
        y_pred = idist.all_gather(y_pred)
        y = idist.all_gather(y)

        np_y_pred = y_pred.cpu().numpy()
        np_y = y.cpu().numpy()

        res = m.compute()

        np_sum = ((np_y - np_y_pred) / np_y).sum()
        np_len = len(np_y_pred)
        np_ans = np_sum / np_len

        assert np_ans == pytest.approx(res)