示例#1
0
    def _init_engines(self) -> Tuple[Engine, Engine]:
        self.train_metrics = {
            'total_loss':
            metrics.RunningAverage(output_transform=lambda x: x['loss']),
            'segment_loss':
            metrics.RunningAverage(
                output_transform=lambda x: x['segment_loss']),
            'kl_div':
            metrics.RunningAverage(output_transform=lambda x: x['kl_div'])
        }

        self.val_metrics = {
            'vae_metrics':
            VAEMetrics(loss_fn=self.criterion,
                       mse_factor=0,
                       kld_factor=self.starting_kld_factor),
            'segment_metrics':
            SegmentationMetrics(num_classes=self.data_loaders.num_classes,
                                threshold=self.config.binarize_threshold),
        }

        trainer = self._init_trainer_engine()
        evaluator = self._init_evaluator_engine()

        return trainer, evaluator
    def _init_engines(self) -> Tuple[Engine, Engine]:
        if self.use_ensemble:
            trainer = self._init_trainer_engine_ensemble()
            evaluator = self._init_evaluator_engine_ensemble()
        else:
            trainer = self._init_trainer_engine()
            evaluator = self._init_evaluator_engine()

        metrics.RunningAverage(output_transform=lambda x: x).attach(trainer, 'train_loss')

        return trainer, evaluator
    def _init_engines(self):
        trainer = self._init_bayesian_trainer_engine(self.model,
                                                     self.optimizer, self.vi,
                                                     self.device)
        evaluator = self._init_bayesian_evaluator_engine(
            self.model, self.metrics, self.device)

        metrics.RunningAverage(output_transform=lambda x: x).attach(
            trainer, 'train_loss')

        return trainer, evaluator
def get_engines(learning_rate=0.01):
    # We remove 1 because of the target column
    model = get_model(n_features=len(useful_columns) - 1)
    optimizer = optim.Adam(model.parameters(), lr=learning_rate)
    loss = nn.MSELoss()

    trainer = engine.create_supervised_trainer(model, optimizer, loss)
    evaluator = engine.create_supervised_evaluator(model, metrics={
        'mae': metrics.MeanAbsoluteError(),
        'loss': metrics.Loss(loss),
        'avg': metrics.RunningAverage(metrics.Loss(loss))
    })

    # workaround for using the ProgressBar with training loss
    Identity().attach(trainer, 'loss')
    Average().attach(trainer, 'avg_loss')
    return trainer, evaluator
示例#5
0
def evaluator_epoch_comp_callback(engine):
    # save masks for each batch
    batch_output = engine.state.output
    input_filenames = batch_output['input_filename']
    masks = batch_output['mask']

    for i, input_filename in enumerate(input_filenames):
        mask = cv2.resize(masks[i],
                          dsize=(utils.cropped_width, utils.cropped_height),
                          interpolation=cv2.INTER_AREA)

        # if pad:
        #     h_start, w_start = utils.h_start, utils.w_start
        #     h, w = mask.shape
        #     # recover to original shape
        #     full_mask = np.zeros((original_height, original_width))
        #     full_mask[h_start:h_start + h, w_start:w_start + w] = t_mask
        #     mask = full_mask
        #print("Input Filename-->", input_filename)
        #instrument_folder_name = input_filename.parent.parent.name
        instrument_folder_name = os.path.basename(
            os.path.dirname(os.path.dirname(input_filename)))
        #print("instrument_folder_name-->", instrument_folder_name)

        # mask_folder/instrument_dataset_x/problem_type_masks/framexxx.png
        mask_folder = mask_save_dir / instrument_folder_name / utils.mask_folder[
            args.problem_type]
        mask_folder.mkdir(exist_ok=True, parents=True)
        mask_filename = mask_folder / os.path.basename(input_filename)
        #print("mask_filename-->", mask_filename)
        cv2.imwrite(str(mask_filename), mask)

        if 'TAPNet' in args.model:
            attmap = batch_output['attmap'][i]

            attmap_folder = mask_save_dir / instrument_folder_name / '_'.join(
                args.problem_type, 'attmaps')
            attmap_folder.mkdir(exist_ok=True, parents=True)
            attmap_filename = attmap_folder / input_filename.name

            cv2.imwrite(str(attmap_filename), attmap)

    evaluator.run(eval_loader)

    # validator engine
    validator = engine.Engine(valid_step)

    # monitor loss
    valid_ra_loss = imetrics.RunningAverage(
        output_transform=lambda x: x['loss'], alpha=0.98)
    valid_ra_loss.attach(validator, 'valid_ra_loss')

    # monitor validation loss over epoch
    valid_loss = imetrics.Loss(loss_func,
                               output_transform=lambda x:
                               (x['output'], x['target']))
    valid_loss.attach(validator, 'valid_loss')

    # monitor <data> mean metrics
    valid_data_miou = imetrics.RunningAverage(
        output_transform=lambda x: x['iou'].data_mean()['mean'], alpha=0.98)
    valid_data_miou.attach(validator, 'mIoU')
    valid_data_mdice = imetrics.RunningAverage(
        output_transform=lambda x: x['dice'].data_mean()['mean'], alpha=0.98)
    valid_data_mdice.attach(validator, 'mDice')

    # show metrics on progress bar (after every iteration)
    valid_pbar = c_handlers.ProgressBar(persist=True, dynamic_ncols=True)
    valid_metric_names = ['valid_ra_loss', 'mIoU', 'mDice']
    valid_pbar.attach(validator, metric_names=valid_metric_names)

    # ## monitor ignite IoU (the same as iou we are using) ###
    # cm = imetrics.ConfusionMatrix(num_classes,
    #     output_transform=lambda x: (x['output'], x['target']))
    # imetrics.IoU(cm,
    #     ignore_index=0
    #     ).attach(validator, 'iou')

    # # monitor ignite mean iou (over all classes even not exist in gt)
    # mean_iou = imetrics.mIoU(cm,
    #     ignore_index=0
    #     ).attach(validator, 'mean_iou')

    @validator.on(engine.Events.STARTED)
    def validator_start_callback(engine):
        pass

    @validator.on(engine.Events.EPOCH_STARTED)
    def validator_epoch_start_callback(engine):
        engine.state.epoch_metrics = {
            # directly use definition to calculate
            'iou':
            MetricRecord(),
            'dice':
            MetricRecord(),
            'confusion_matrix':
            np.zeros((num_classes, num_classes), dtype=np.uint32),
        }

    # evaluate after iter finish
    @validator.on(engine.Events.ITERATION_COMPLETED)
    def validator_iter_comp_callback(engine):
        pass

    # evaluate after epoch finish
    @validator.on(engine.Events.EPOCH_COMPLETED)
    def validator_epoch_comp_callback(engine):

        # log ignite metrics
        # logging_logger.info(engine.state.metrics)
        # ious = engine.state.metrics['iou']
        # msg = 'IoU: '
        # for ins_id, iou in enumerate(ious):
        #     msg += '{:d}: {:.3f}, '.format(ins_id + 1, iou)
        # logging_logger.info(msg)
        # logging_logger.info('nonzero mean IoU for all data: {:.3f}'.format(ious[ious > 0].mean()))

        # log monitored epoch metrics
        epoch_metrics = engine.state.epoch_metrics

        ######### NOTICE: Two metrics are available but different ##########
        ### 1. mean metrics for all data calculated by confusion matrix ####
        '''
        compared with using confusion_matrix[1:, 1:] in original code,
        we use the full confusion matrix and only present non-background result
        '''
        confusion_matrix = epoch_metrics['confusion_matrix']  # [1:, 1:]
        ious = calculate_iou(confusion_matrix)
        dices = calculate_dice(confusion_matrix)

        mean_ious = np.mean(list(ious.values()))
        mean_dices = np.mean(list(dices.values()))
        std_ious = np.std(list(ious.values()))
        std_dices = np.std(list(dices.values()))

        logging_logger.info('mean IoU: %.3f, std: %.3f, for each class: %s' %
                            (mean_ious, std_ious, ious))
        logging_logger.info('mean Dice: %.3f, std: %.3f, for each class: %s' %
                            (mean_dices, std_dices, dices))

        ### 2. mean metrics for all data calculated by definition ###
        iou_data_mean = epoch_metrics['iou'].data_mean()
        dice_data_mean = epoch_metrics['dice'].data_mean()

        logging_logger.info('data (%d) mean IoU: %.3f, std: %.3f' %
                            (len(iou_data_mean['items']),
                             iou_data_mean['mean'], iou_data_mean['std']))
        logging_logger.info('data (%d) mean Dice: %.3f, std: %.3f' %
                            (len(dice_data_mean['items']),
                             dice_data_mean['mean'], dice_data_mean['std']))

        # record metrics in trainer every epoch
        # trainer.state.metrics_records[trainer.state.epoch] = \
        #     {'miou': mean_ious, 'std_miou': std_ious,
        #     'mdice': mean_dices, 'std_mdice': std_dices}

        trainer.state.metrics_records[trainer.state.epoch] = \
            {'miou': iou_data_mean['mean'], 'std_miou': iou_data_mean['std'],
            'mdice': dice_data_mean['mean'], 'std_mdice': dice_data_mean['std']}

    # log interal variables(attention maps, outputs, etc.) on validation
    def tb_log_valid_iter_vars(engine, logger, event_name):
        log_tag = 'valid_iter'
        output = engine.state.output
        batch_size = output['output'].shape[0]
        res_grid = tvutils.make_grid(
            torch.cat([
                output['output_argmax'].unsqueeze(1),
                output['target'].unsqueeze(1),
            ]),
            padding=2,
            normalize=False,  # show origin image
            nrow=batch_size).cpu()

        logger.writer.add_image(tag='%s (outputs, targets)' % (log_tag),
                                img_tensor=res_grid)

        if 'TAPNet' in args.model:
            # log attention maps and other internal values
            inter_vals_grid = tvutils.make_grid(torch.cat([
                output['attmap'],
            ]),
                                                padding=2,
                                                normalize=True,
                                                nrow=batch_size).cpu()
            logger.writer.add_image(tag='%s internal vals' % (log_tag),
                                    img_tensor=inter_vals_grid)

    def tb_log_valid_epoch_vars(engine, logger, event_name):
        log_tag = 'valid_iter'
        # log monitored epoch metrics
        epoch_metrics = engine.state.epoch_metrics
        confusion_matrix = epoch_metrics['confusion_matrix']  # [1:, 1:]
        ious = calculate_iou(confusion_matrix)
        dices = calculate_dice(confusion_matrix)

        mean_ious = np.mean(list(ious.values()))
        mean_dices = np.mean(list(dices.values()))
        logger.writer.add_scalar('mIoU', mean_ious, engine.state.epoch)
        logger.writer.add_scalar('mIoU', mean_dices, engine.state.epoch)

    if args.tb_log:
        # log internal values
        tb_logger.attach(validator,
                         log_handler=tb_log_valid_iter_vars,
                         event_name=engine.Events.ITERATION_COMPLETED)
        tb_logger.attach(validator,
                         log_handler=tb_log_valid_epoch_vars,
                         event_name=engine.Events.EPOCH_COMPLETED)
        # tb_logger.attach(validator, log_handler=OutputHandler('valid_iter', valid_metric_names),
        #     event_name=engine.Events.ITERATION_COMPLETED)
        tb_logger.attach(validator,
                         log_handler=OutputHandler('valid_epoch',
                                                   ['valid_loss']),
                         event_name=engine.Events.EPOCH_COMPLETED)

    # score function for model saving
    ckpt_score_function = lambda engine: \
        np.mean(list(calculate_iou(engine.state.epoch_metrics['confusion_matrix']).values()))
    # ckpt_score_function = lambda engine: engine.state.epoch_metrics['iou'].data_mean()['mean']

    ckpt_filename_prefix = 'fold_%d' % fold

    # model saving handler
    model_ckpt_handler = handlers.ModelCheckpoint(
        dirname=args.model_save_dir,
        filename_prefix=ckpt_filename_prefix,
        score_function=ckpt_score_function,
        create_dir=True,
        require_empty=False,
        save_as_state_dict=True,
        atomic=True)

    validator.add_event_handler(event_name=engine.Events.EPOCH_COMPLETED,
                                handler=model_ckpt_handler,
                                to_save={
                                    'model': model,
                                })

    # early stop
    # trainer=trainer, but should be handled by validator
    early_stopping = handlers.EarlyStopping(patience=args.es_patience,
                                            score_function=ckpt_score_function,
                                            trainer=trainer)

    validator.add_event_handler(event_name=engine.Events.EPOCH_COMPLETED,
                                handler=early_stopping)

    # evaluate after epoch finish
    @trainer.on(engine.Events.EPOCH_COMPLETED)
    def trainer_epoch_comp_callback(engine):
        validator.run(valid_loader)

    trainer.run(train_loader, max_epochs=args.max_epochs)

    if args.tb_log:
        # close tb_logger
        tb_logger.close()

    return trainer.state.metrics_records
示例#6
0
def train_fold(fold, args):
    # loggers
    logging_logger = args.logging_logger
    if args.tb_log:
        tb_logger = args.tb_logger

    num_classes = utils.problem_class[args.problem_type]

    # init model
    model = eval(args.model)(in_channels=3, num_classes=num_classes, bn=False)
    model = nn.DataParallel(model, device_ids=args.device_ids).cuda()

    # transform for train/valid data
    train_transform, valid_transform = get_transform(args.model)

    # loss function
    loss_func = LossMulti(num_classes, args.jaccard_weight)
    if args.semi:
        loss_func_semi = LossMultiSemi(num_classes, args.jaccard_weight, args.semi_loss_alpha, args.semi_method)

    # train/valid filenames
    train_filenames, valid_filenames = utils.trainval_split(args.train_dir, fold)

    # DataLoader and Dataset args
    train_shuffle = True
    train_ds_kwargs = {
        'filenames': train_filenames,
        'problem_type': args.problem_type,
        'transform': train_transform,
        'model': args.model,
        'mode': 'train',
        'semi': args.semi,
    }

    valid_num_workers = args.num_workers
    valid_batch_size = args.batch_size
    if 'TAPNet' in args.model:
        # for TAPNet, cancel default shuffle, use self-defined shuffle in torch.Dataset instead
        train_shuffle = False
        train_ds_kwargs['batch_size'] = args.batch_size
        train_ds_kwargs['mf'] = args.mf
    if args.semi == True:
        train_ds_kwargs['semi_method'] = args.semi_method
        train_ds_kwargs['semi_percentage'] = args.semi_percentage

    # additional valid dataset kws
    valid_ds_kwargs = {
        'filenames': valid_filenames,
        'problem_type': args.problem_type,
        'transform': valid_transform,
        'model': args.model,
        'mode': 'valid',
    }

    if 'TAPNet' in args.model:
        # in validation, num_workers should be set to 0 for sequences
        valid_num_workers = 0
        # in validation, batch_size should be set to 1 for sequences
        valid_batch_size = 1
        valid_ds_kwargs['mf'] = args.mf

    # train dataloader
    train_loader = DataLoader(
        dataset=RobotSegDataset(**train_ds_kwargs),
        shuffle=train_shuffle, # set to False to disable pytorch dataset shuffle
        num_workers=args.num_workers,
        batch_size=args.batch_size,
        pin_memory=True
    )
    # valid dataloader
    valid_loader = DataLoader(
        dataset=RobotSegDataset(**valid_ds_kwargs),
        shuffle=False, # in validation, no need to shuffle
        num_workers=valid_num_workers,
        batch_size=valid_batch_size, # in valid time. have to use one image by one
        pin_memory=True
    )

    # optimizer
    optimizer = optim.Adam(model.parameters(), lr=args.lr, weight_decay=args.weight_decay)
    # optimizer = optim.SGD(model.parameters(), lr=args.lr, momentum=0.9, 
    #     weight_decay=args.weight_decay, nesterov=True)    

    # ignite trainer process function
    def train_step(engine, batch):
        # set model to train
        model.train()
        # clear gradients
        optimizer.zero_grad()
        
        # additional params to feed into model
        add_params = {}
        inputs = batch['input'].cuda(non_blocking=True)
        with torch.no_grad():
            targets = batch['target'].cuda(non_blocking=True)
            # for TAPNet, add attention maps
            if 'TAPNet' in args.model:
                add_params['attmap'] = batch['attmap'].cuda(non_blocking=True)

        outputs = model(inputs, **add_params)

        loss_kwargs = {}

        if args.semi:
            loss_kwargs['labeled'] = batch['labeled']
            if args.semi_method == 'rev_flow':
                loss_kwargs['optflow'] = batch['optflow']
            loss = loss_func_semi(outputs, targets, **loss_kwargs)
        else:
            loss = loss_func(outputs, targets, **loss_kwargs)
        loss.backward()
        optimizer.step()

        return_dict = {
            'output': outputs,
            'target': targets,
            'loss_kwargs': loss_kwargs,
            'loss': loss.item(),
        }

        # for TAPNet, update attention maps after each iteration
        if 'TAPNet' in args.model:
            # output_classes and target_classes: <b, h, w>
            output_softmax_np = torch.softmax(outputs, dim=1).detach().cpu().numpy()
            # update attention maps
            train_loader.dataset.update_attmaps(output_softmax_np, batch['abs_idx'].numpy())
            return_dict['attmap'] = add_params['attmap']

        return return_dict
    
    # init trainer
    trainer = engine.Engine(train_step)

    # lr scheduler and handler
    # cyc_scheduler = optim.lr_scheduler.CyclicLR(optimizer, args.lr / 100, args.lr)
    # lr_scheduler = c_handlers.param_scheduler.LRScheduler(cyc_scheduler)
    # trainer.add_event_handler(engine.Events.ITERATION_COMPLETED, lr_scheduler)

    step_scheduler = optim.lr_scheduler.StepLR(optimizer,
        step_size=args.lr_decay_epochs, gamma=args.lr_decay)
    lr_scheduler = c_handlers.param_scheduler.LRScheduler(step_scheduler)
    trainer.add_event_handler(engine.Events.EPOCH_STARTED, lr_scheduler)


    @trainer.on(engine.Events.STARTED)
    def trainer_start_callback(engine):
        logging_logger.info('training fold {}, {} train / {} valid files'. \
            format(fold, len(train_filenames), len(valid_filenames)))

        # resume training
        if args.resume:
            # ckpt for current fold fold_<fold>_model_<epoch>.pth
            ckpt_dir = Path(args.ckpt_dir)
            ckpt_filename = ckpt_dir.glob('fold_%d_model_[0-9]*.pth' % fold)[0]
            res = re.match(r'fold_%d_model_(\d+).pth' % fold, ckpt_filename)
            # restore epoch
            engine.state.epoch = int(res.groups()[0])
            # load model state dict
            model.load_state_dict(torch.load(str(ckpt_filename)))
            logging_logger.info('restore model [{}] from epoch {}.'.format(args.model, engine.state.epoch))
        else:
            logging_logger.info('train model [{}] from scratch'.format(args.model))

        # record metrics history every epoch
        engine.state.metrics_records = {}


    @trainer.on(engine.Events.EPOCH_STARTED)
    def trainer_epoch_start_callback(engine):
        # log learning rate on pbar
        train_pbar.log_message('model: %s, problem type: %s, fold: %d, lr: %.5f, batch size: %d' % \
            (args.model, args.problem_type, fold, lr_scheduler.get_param(), args.batch_size))
        
        # for TAPNet, change dataset schedule to random after the first epoch
        if 'TAPNet' in args.model and engine.state.epoch > 1:
            train_loader.dataset.set_dataset_schedule("shuffle")


    @trainer.on(engine.Events.ITERATION_COMPLETED)
    def trainer_iter_comp_callback(engine):
        # logging_logger.info(engine.state.metrics)
        pass

    # monitor loss
    # running average loss
    train_ra_loss = imetrics.RunningAverage(output_transform=
        lambda x: x['loss'], alpha=0.98)
    train_ra_loss.attach(trainer, 'train_ra_loss')

    # monitor train loss over epoch
    if args.semi:
        train_loss = imetrics.Loss(loss_func_semi, output_transform=lambda x: (x['output'], x['target'], x['loss_kwargs']))
    else:
        train_loss = imetrics.Loss(loss_func, output_transform=lambda x: (x['output'], x['target']))
    train_loss.attach(trainer, 'train_loss')

    # progress bar
    train_pbar = c_handlers.ProgressBar(persist=True, dynamic_ncols=True)
    train_metric_names = ['train_ra_loss']
    train_pbar.attach(trainer, metric_names=train_metric_names)

    # tensorboardX: log train info
    if args.tb_log:
        tb_logger.attach(trainer, log_handler=OptimizerParamsHandler(optimizer, 'lr'), 
            event_name=engine.Events.EPOCH_STARTED)

        tb_logger.attach(trainer, log_handler=OutputHandler('train_iter', train_metric_names),
            event_name=engine.Events.ITERATION_COMPLETED)

        tb_logger.attach(trainer, log_handler=OutputHandler('train_epoch', ['train_loss']),
            event_name=engine.Events.EPOCH_COMPLETED)

        tb_logger.attach(trainer,
             log_handler=WeightsScalarHandler(model, reduction=torch.norm),
             event_name=engine.Events.ITERATION_COMPLETED)

        # tb_logger.attach(trainer, log_handler=tb_log_train_vars, 
        #     event_name=engine.Events.ITERATION_COMPLETED)


    # ignite validator process function
    def valid_step(engine, batch):
        with torch.no_grad():
            model.eval()
            inputs = batch['input'].cuda(non_blocking=True)
            targets = batch['target'].cuda(non_blocking=True)

            # additional arguments
            add_params = {}
            # for TAPNet, add attention maps
            if 'TAPNet' in args.model:
                add_params['attmap'] = batch['attmap'].cuda(non_blocking=True)

            # output logits
            outputs = model(inputs, **add_params)
            # loss
            loss = loss_func(outputs, targets)

            output_softmaxs = torch.softmax(outputs, dim=1)
            output_argmaxs = output_softmaxs.argmax(dim=1)
            # output_classes and target_classes: <b, h, w>
            output_classes = output_argmaxs.cpu().numpy()
            target_classes = targets.cpu().numpy()

            # record current batch metrics
            iou_mRecords = MetricRecord()
            dice_mRecords = MetricRecord()

            cm_b = np.zeros((num_classes, num_classes), dtype=np.uint32)

            for output_class, target_class in zip(output_classes, target_classes):
                # calculate metrics for each frame
                # calculate using confusion matrix or dirctly using definition
                cm = calculate_confusion_matrix_from_arrays(output_class, target_class, num_classes)
                iou_mRecords.update_record(calculate_iou(cm))
                dice_mRecords.update_record(calculate_dice(cm))
                cm_b += cm

                ######## calculate directly using definition ##########
                # iou_mRecords.update_record(iou_multi_np(target_class, output_class))
                # dice_mRecords.update_record(dice_multi_np(target_class, output_class))

            # accumulate batch metrics to engine state
            engine.state.epoch_metrics['confusion_matrix'] += cm_b
            engine.state.epoch_metrics['iou'].merge(iou_mRecords)
            engine.state.epoch_metrics['dice'].merge(dice_mRecords)


            return_dict = {
                'loss': loss.item(),
                'output': outputs,
                'output_argmax': output_argmaxs,
                'target': targets,
                # for monitoring
                'iou': iou_mRecords,
                'dice': dice_mRecords,
            }

            if 'TAPNet' in args.model:
                # for TAPNet, update attention maps after each iteration
                valid_loader.dataset.update_attmaps(output_softmaxs.cpu().numpy(), batch['abs_idx'].numpy())
                # for TAPNet, return extra internal values
                return_dict['attmap'] = add_params['attmap']
                # TODO: for TAPNet, return internal self-learned attention maps

            return return_dict


    # validator engine
    validator = engine.Engine(valid_step)

    # monitor loss
    valid_ra_loss = imetrics.RunningAverage(output_transform=
        lambda x: x['loss'], alpha=0.98)
    valid_ra_loss.attach(validator, 'valid_ra_loss')

    # monitor validation loss over epoch
    valid_loss = imetrics.Loss(loss_func, output_transform=lambda x: (x['output'], x['target']))
    valid_loss.attach(validator, 'valid_loss')
    
    # monitor <data> mean metrics
    valid_data_miou = imetrics.RunningAverage(output_transform=
        lambda x: x['iou'].data_mean()['mean'], alpha=0.98)
    valid_data_miou.attach(validator, 'mIoU')
    valid_data_mdice = imetrics.RunningAverage(output_transform=
        lambda x: x['dice'].data_mean()['mean'], alpha=0.98)
    valid_data_mdice.attach(validator, 'mDice')

    # show metrics on progress bar (after every iteration)
    valid_pbar = c_handlers.ProgressBar(persist=True, dynamic_ncols=True)
    valid_metric_names = ['valid_ra_loss', 'mIoU', 'mDice']
    valid_pbar.attach(validator, metric_names=valid_metric_names)


    # ## monitor ignite IoU (the same as iou we are using) ###
    # cm = imetrics.ConfusionMatrix(num_classes, 
    #     output_transform=lambda x: (x['output'], x['target']))
    # imetrics.IoU(cm, 
    #     ignore_index=0
    #     ).attach(validator, 'iou')

    # # monitor ignite mean iou (over all classes even not exist in gt)
    # mean_iou = imetrics.mIoU(cm, 
    #     ignore_index=0
    #     ).attach(validator, 'mean_iou')


    @validator.on(engine.Events.STARTED)
    def validator_start_callback(engine):
        pass

    @validator.on(engine.Events.EPOCH_STARTED)
    def validator_epoch_start_callback(engine):
        engine.state.epoch_metrics = {
            # directly use definition to calculate
            'iou': MetricRecord(),
            'dice': MetricRecord(),
            'confusion_matrix': np.zeros((num_classes, num_classes), dtype=np.uint32),
        }


    # evaluate after iter finish
    @validator.on(engine.Events.ITERATION_COMPLETED)
    def validator_iter_comp_callback(engine):
        pass

    # evaluate after epoch finish
    @validator.on(engine.Events.EPOCH_COMPLETED)
    def validator_epoch_comp_callback(engine):

        # log ignite metrics
        # logging_logger.info(engine.state.metrics)
        # ious = engine.state.metrics['iou']
        # msg = 'IoU: '
        # for ins_id, iou in enumerate(ious):
        #     msg += '{:d}: {:.3f}, '.format(ins_id + 1, iou)
        # logging_logger.info(msg)
        # logging_logger.info('nonzero mean IoU for all data: {:.3f}'.format(ious[ious > 0].mean()))

        # log monitored epoch metrics
        epoch_metrics = engine.state.epoch_metrics

        ######### NOTICE: Two metrics are available but different ##########
        ### 1. mean metrics for all data calculated by confusion matrix ####

        '''
        compared with using confusion_matrix[1:, 1:] in original code,
        we use the full confusion matrix and only present non-background result
        '''
        confusion_matrix = epoch_metrics['confusion_matrix']# [1:, 1:]
        ious = calculate_iou(confusion_matrix)
        dices = calculate_dice(confusion_matrix)

        mean_ious = np.mean(list(ious.values()))
        mean_dices = np.mean(list(dices.values()))
        std_ious = np.std(list(ious.values()))
        std_dices = np.std(list(dices.values()))

        logging_logger.info('mean IoU: %.3f, std: %.3f, for each class: %s' % 
            (mean_ious, std_ious, ious))
        logging_logger.info('mean Dice: %.3f, std: %.3f, for each class: %s' % 
            (mean_dices, std_dices, dices))


        ### 2. mean metrics for all data calculated by definition ###
        iou_data_mean = epoch_metrics['iou'].data_mean()
        dice_data_mean = epoch_metrics['dice'].data_mean()

        logging_logger.info('data (%d) mean IoU: %.3f, std: %.3f' %
            (len(iou_data_mean['items']), iou_data_mean['mean'], iou_data_mean['std']))
        logging_logger.info('data (%d) mean Dice: %.3f, std: %.3f' %
            (len(dice_data_mean['items']), dice_data_mean['mean'], dice_data_mean['std']))

        # record metrics in trainer every epoch
        # trainer.state.metrics_records[trainer.state.epoch] = \
        #     {'miou': mean_ious, 'std_miou': std_ious,
        #     'mdice': mean_dices, 'std_mdice': std_dices}
        
        trainer.state.metrics_records[trainer.state.epoch] = \
            {'miou': iou_data_mean['mean'], 'std_miou': iou_data_mean['std'],
            'mdice': dice_data_mean['mean'], 'std_mdice': dice_data_mean['std']}


    # log interal variables(attention maps, outputs, etc.) on validation
    def tb_log_valid_iter_vars(engine, logger, event_name):
        log_tag = 'valid_iter'
        output = engine.state.output
        batch_size = output['output'].shape[0]
        res_grid = tvutils.make_grid(torch.cat([
            output['output_argmax'].unsqueeze(1),
            output['target'].unsqueeze(1),
        ]), padding=2, 
        normalize=False, # show origin image
        nrow=batch_size).cpu()

        logger.writer.add_image(tag='%s (outputs, targets)' % (log_tag), img_tensor=res_grid)

        if 'TAPNet' in args.model:
            # log attention maps and other internal values
            inter_vals_grid = tvutils.make_grid(torch.cat([
                output['attmap'],
            ]), padding=2, normalize=True, nrow=batch_size).cpu()
            logger.writer.add_image(tag='%s internal vals' % (log_tag), img_tensor=inter_vals_grid)

    def tb_log_valid_epoch_vars(engine, logger, event_name):
        log_tag = 'valid_iter'
        # log monitored epoch metrics
        epoch_metrics = engine.state.epoch_metrics
        confusion_matrix = epoch_metrics['confusion_matrix']# [1:, 1:]
        ious = calculate_iou(confusion_matrix)
        dices = calculate_dice(confusion_matrix)

        mean_ious = np.mean(list(ious.values()))
        mean_dices = np.mean(list(dices.values()))
        logger.writer.add_scalar('mIoU', mean_ious, engine.state.epoch)
        logger.writer.add_scalar('mIoU', mean_dices, engine.state.epoch)



    if args.tb_log:
        # log internal values
        tb_logger.attach(validator, log_handler=tb_log_valid_iter_vars, 
            event_name=engine.Events.ITERATION_COMPLETED)
        tb_logger.attach(validator, log_handler=tb_log_valid_epoch_vars,
            event_name=engine.Events.EPOCH_COMPLETED)
        # tb_logger.attach(validator, log_handler=OutputHandler('valid_iter', valid_metric_names),
        #     event_name=engine.Events.ITERATION_COMPLETED)
        tb_logger.attach(validator, log_handler=OutputHandler('valid_epoch', ['valid_loss']),
            event_name=engine.Events.EPOCH_COMPLETED)


    # score function for model saving
    ckpt_score_function = lambda engine: \
        np.mean(list(calculate_iou(engine.state.epoch_metrics['confusion_matrix']).values()))
    # ckpt_score_function = lambda engine: engine.state.epoch_metrics['iou'].data_mean()['mean']
    
    ckpt_filename_prefix = 'fold_%d' % fold

    # model saving handler
    model_ckpt_handler = handlers.ModelCheckpoint(
        dirname=args.model_save_dir,
        filename_prefix=ckpt_filename_prefix, 
        score_function=ckpt_score_function,
        create_dir=True,
        require_empty=False,
        save_as_state_dict=True,
        atomic=True)


    validator.add_event_handler(event_name=engine.Events.EPOCH_COMPLETED, 
        handler=model_ckpt_handler,
        to_save={
            'model': model,
        })

    # early stop
    # trainer=trainer, but should be handled by validator
    early_stopping = handlers.EarlyStopping(patience=args.es_patience, 
        score_function=ckpt_score_function,
        trainer=trainer
        )

    validator.add_event_handler(event_name=engine.Events.EPOCH_COMPLETED,
        handler=early_stopping)


    # evaluate after epoch finish
    @trainer.on(engine.Events.EPOCH_COMPLETED)
    def trainer_epoch_comp_callback(engine):
        validator.run(valid_loader)

    trainer.run(train_loader, max_epochs=args.max_epochs)

    if args.tb_log:
        # close tb_logger
        tb_logger.close()

    return trainer.state.metrics_records
示例#7
0
class Metrics(enum.Enum):
    train_class_metrics: t.Dict[str, im.Metric] = {
        'acc_1':
        im.RunningAverage(im.Accuracy(output_transform=lambda x: x[1:3])),
        'acc_5':
        im.RunningAverage(
            im.TopKCategoricalAccuracy(k=5,
                                       output_transform=lambda x: x[1:3])),
        'ce_loss':
        im.RunningAverage(output_transform=lambda x: x[0]),
        'total_loss':
        im.RunningAverage(output_transform=lambda x: x[0])
    }
    train_ae_metrics: t.Dict[str, im.Metric] = {
        'acc_1':
        im.RunningAverage(
            im.Accuracy(output_transform=lambda x: (x[1], x[5]))),
        'acc_5':
        im.RunningAverage(
            im.TopKCategoricalAccuracy(k=5,
                                       output_transform=lambda x:
                                       (x[1], x[5]))),
        'ce_loss':
        train_ae_ce_loss,
        'l1_loss':
        train_ae_l1_loss,
        'total_loss':
        train_ae_total_loss
    }
    train_gsnn_metrics: t.Dict[str, im.Metric] = {
        'acc_1':
        im.RunningAverage(
            im.Accuracy(
                output_transform=lambda x: (x[0].squeeze(dim=1), x[6]))),
        'acc_5':
        im.RunningAverage(
            im.TopKCategoricalAccuracy(k=5,
                                       output_transform=lambda x:
                                       (x[0].squeeze(dim=1), x[6]))),
        'ce_loss':
        train_gsnn_ce_loss,
        'kld_loss':
        train_gsnn_kld_loss,
        'total_loss':
        train_gsnn_total_loss,
        'kld_factor':
        train_gsnn_kld_factor,
    }
    train_vae_metrics: t.Dict[str, im.Metric] = {
        'acc_1':
        im.RunningAverage(
            im.Accuracy(
                output_transform=lambda x: (x[1].squeeze(dim=1), x[7]))),
        'acc_5':
        im.RunningAverage(
            im.TopKCategoricalAccuracy(k=5,
                                       output_transform=lambda x:
                                       (x[1].squeeze(dim=1), x[7]))),
        'ce_loss':
        train_vae_ce_loss,
        'l1_loss':
        train_vae_l1_loss,
        'kld_loss':
        train_vae_kld_loss,
        'total_loss':
        train_vae_total_loss,
        'kld_factor':
        train_vae_kld_factor,
    }
    eval_class_metrics = {
        'acc_1':
        im.Accuracy(output_transform=lambda x: x[0:2]),
        'acc_5':
        im.TopKCategoricalAccuracy(k=5, output_transform=lambda x: x[0:2]),
        'ce_loss':
        im.Loss(nn.CrossEntropyLoss(), output_transform=lambda x: x[0:2]),
        'total_loss':
        im.Loss(nn.CrossEntropyLoss(), output_transform=lambda x: x[0:2])
    }
    eval_ae_metrics = {
        'acc_1':
        im.Accuracy(output_transform=lambda x: (x[1], x[5])),
        'acc_5':
        im.TopKCategoricalAccuracy(k=5,
                                   output_transform=lambda x: (x[1], x[5])),
        'ce_loss':
        eval_ae_loss_metric[0],
        'l1_loss':
        eval_ae_loss_metric[1],
        'total_loss':
        eval_ae_total_loss,
    }
    eval_gsnn_metrics = {
        'acc_1':
        im.Accuracy(output_transform=lambda x: (x[-1], x[-2])),
        'acc_5':
        im.TopKCategoricalAccuracy(k=5,
                                   output_transform=lambda x: (x[-1], x[-2])),
        'ce_loss':
        eval_gsnn_loss_metric[0],
        'kld_loss':
        eval_gsnn_loss_metric[1],
        'total_loss':
        eval_gsnn_total_loss,
    }
    eval_vae_metrics = {
        'acc_1':
        im.Accuracy(output_transform=lambda x: (x[-1], x[-2])),
        'acc_5':
        im.TopKCategoricalAccuracy(k=5,
                                   output_transform=lambda x: (x[-1], x[-2])),
        'ce_loss':
        eval_vae_loss_metric[0],
        'l1_loss':
        eval_vae_loss_metric[1],
        'kld_loss':
        eval_vae_loss_metric[2],
        'total_loss':
        eval_vae_total_loss,
    }
示例#8
0
import enum
import typing as t

import ignite.metrics as im
import torch.nn as nn

import criterion.custom as cc
import metrics.custom as cm
import models as mo

########################################################################################################################
# AE HELPERS
########################################################################################################################
train_ae_ce_loss = im.RunningAverage(output_transform=lambda x: x[-2])
train_ae_l1_loss = im.RunningAverage(output_transform=lambda x: x[-1])
train_ae_total_loss = im.RunningAverage(
    output_transform=lambda x: sum([x[-2], x[-1]]))
eval_ae_loss_metric = cm.AELoss(cc.AECriterion())
eval_ae_total_loss = im.MetricsLambda(lambda x: sum(x), eval_ae_loss_metric)

########################################################################################################################
# GSNN HELPERS
########################################################################################################################
train_gsnn_ce_loss = im.RunningAverage(output_transform=lambda x: x[-3])
train_gsnn_kld_loss = im.RunningAverage(output_transform=lambda x: x[-2])
train_gsnn_kld_factor = im.RunningAverage(output_transform=lambda x: x[-1])
train_gsnn_total_loss = im.RunningAverage(
    output_transform=lambda x: sum([x[-3], x[-2]]))
eval_gsnn_loss_metric = cm.GSNNLoss(cc.GSNNCriterion())
eval_gsnn_total_loss = im.MetricsLambda(lambda x: sum(x),
                                        eval_gsnn_loss_metric)
示例#9
0
def run(experiment_name: str,
        visdom_host: str,
        visdom_port: int,
        visdom_env_path: str,
        model_class: str,
        model_args: Dict[str, Any],
        optimizer_class: str,
        optimizer_args: Dict[str, Any],
        dataset_class: str,
        dataset_args: Dict[str, Any],
        batch_train: int,
        batch_test: int,
        workers_train: int,
        workers_test: int,
        transforms: List[Dict[str, Union[str, Dict[str, Any]]]],
        epochs: int,
        log_interval: int,
        saved_models_path: str,
        performance_metrics: Optional = None,
        scheduler_class: Optional[str] = None,
        scheduler_args: Optional[Dict[str, Any]] = None,
        model_suffix: Optional[str] = None,
        setup_suffix: Optional[str] = None,
        orig_stdout: Optional[io.TextIOBase] = None):

    with _utils.tqdm_stdout(orig_stdout) as orig_stdout:
        device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')

        transforms_train = list()
        transforms_test = list()

        for idx, transform in enumerate(transforms):
            use_train = transform.get('train', True)
            use_test = transform.get('test', True)

            transform = _utils.load_class(
                transform['class'])(**transform['args'])

            if use_train:
                transforms_train.append(transform)
            if use_test:
                transforms_test.append(transform)

            transforms[idx]['train'] = use_train
            transforms[idx]['test'] = use_test

        transforms_train = tv.transforms.Compose(transforms_train)
        transforms_test = tv.transforms.Compose(transforms_test)

        Dataset: Type = _utils.load_class(dataset_class)

        train_loader, eval_loader = _utils.get_data_loaders(
            Dataset, dataset_args, batch_train, batch_test, workers_train,
            workers_test, transforms_train, transforms_test)

        Network: Type = _utils.load_class(model_class)
        model: _interfaces.AbstractNet = Network(**model_args)
        model = model.to(device)

        Optimizer: Type = _utils.load_class(optimizer_class)
        optimizer: torch.optim.Optimizer = Optimizer(model.parameters(),
                                                     **optimizer_args)

        if scheduler_class is not None:
            Scheduler: Type = _utils.load_class(scheduler_class)

            if scheduler_args is None:
                scheduler_args = dict()

            scheduler: Optional[
                torch.optim.lr_scheduler._LRScheduler] = Scheduler(
                    optimizer, **scheduler_args)
        else:
            scheduler = None

        model_short_name = ''.join(
            [c for c in Network.__name__ if c == c.upper()])
        model_name = '{}{}'.format(
            model_short_name,
            '-{}'.format(model_suffix) if model_suffix is not None else '')
        visdom_env_name = '{}_{}_{}{}'.format(
            Dataset.__name__, experiment_name, model_name,
            '-{}'.format(setup_suffix) if setup_suffix is not None else '')

        vis, vis_pid = _visdom.get_visdom_instance(visdom_host, visdom_port,
                                                   visdom_env_name,
                                                   visdom_env_path)

        prog_bar_epochs = tqdm.tqdm(total=epochs,
                                    desc='Epochs',
                                    file=orig_stdout,
                                    dynamic_ncols=True,
                                    unit='epoch')
        prog_bar_iters = tqdm.tqdm(desc='Batches',
                                   file=orig_stdout,
                                   dynamic_ncols=True)

        tqdm.tqdm.write(f'\n{repr(model)}\n')
        tqdm.tqdm.write('Total number of parameters: {:.2f}M'.format(
            sum(p.numel() for p in model.parameters()) / 1e6))

        def training_step(_: ieng.Engine,
                          batch: _interfaces.TensorPair) -> torch.Tensor:
            model.train()

            optimizer.zero_grad()

            x, y = batch

            x = x.to(device)
            y = y.to(device)

            _, loss = model(x, y)

            loss.backward(retain_graph=False)
            optimizer.step(None)

            return loss.item()

        def eval_step(_: ieng.Engine,
                      batch: _interfaces.TensorPair) -> _interfaces.TensorPair:
            model.eval()

            with torch.no_grad():
                x, y = batch

                x = x.to(device)
                y = y.to(device)

                y_pred = model(x)

            return y_pred, y

        trainer = ieng.Engine(training_step)
        validator_train = ieng.Engine(eval_step)
        validator_eval = ieng.Engine(eval_step)

        # placeholder for summary window
        vis.text(text='',
                 win=experiment_name,
                 env=visdom_env_name,
                 opts={
                     'title': 'Summary',
                     'width': 940,
                     'height': 416
                 },
                 append=vis.win_exists(experiment_name, visdom_env_name))

        default_metrics = {
            "Loss": {
                "window_name":
                None,
                "x_label":
                "#Epochs",
                "y_label":
                model.loss_fn_name,
                "width":
                940,
                "height":
                416,
                "lines": [{
                    "line_label":
                    "SMA",
                    "object":
                    imet.RunningAverage(output_transform=lambda x: x),
                    "test":
                    False,
                    "update_rate":
                    "iteration"
                }, {
                    "line_label": "Val.",
                    "object": imet.Loss(model.loss_fn)
                }]
            }
        }

        performance_metrics = {**default_metrics, **performance_metrics}
        checkpoint_metrics = list()

        for scope_name, scope in performance_metrics.items():
            scope['window_name'] = scope.get('window_name',
                                             scope_name) or scope_name

            for line in scope['lines']:
                if 'object' not in line:
                    line['object']: imet.Metric = _utils.load_class(
                        line['class'])(**line['args'])

                line['metric_label'] = '{}: {}'.format(scope['window_name'],
                                                       line['line_label'])

                line['update_rate'] = line.get('update_rate', 'epoch')
                line_suffixes = list()
                if line['update_rate'] == 'iteration':
                    line['object'].attach(trainer, line['metric_label'])
                    line['train'] = False
                    line['test'] = False

                    line_suffixes.append(' Train.')

                if line.get('train', True):
                    line['object'].attach(validator_train,
                                          line['metric_label'])
                    line_suffixes.append(' Train.')
                if line.get('test', True):
                    line['object'].attach(validator_eval, line['metric_label'])
                    line_suffixes.append(' Eval.')

                    if line.get('is_checkpoint', False):
                        checkpoint_metrics.append(line['metric_label'])

                for line_suffix in line_suffixes:
                    _visdom.plot_line(
                        vis=vis,
                        window_name=scope['window_name'],
                        env=visdom_env_name,
                        line_label=line['line_label'] + line_suffix,
                        x_label=scope['x_label'],
                        y_label=scope['y_label'],
                        width=scope['width'],
                        height=scope['height'],
                        draw_marker=(line['update_rate'] == 'epoch'))

        if checkpoint_metrics:
            score_name = 'performance'

            def get_score(engine: ieng.Engine) -> float:
                current_mode = getattr(
                    engine.state.dataloader.iterable.dataset,
                    dataset_args['training']['key'])
                val_mode = dataset_args['training']['no']

                score = 0.0
                if current_mode == val_mode:
                    for metric_name in checkpoint_metrics:
                        try:
                            score += engine.state.metrics[metric_name]
                        except KeyError:
                            pass

                return score

            model_saver = ihan.ModelCheckpoint(os.path.join(
                saved_models_path, visdom_env_name),
                                               filename_prefix=visdom_env_name,
                                               score_name=score_name,
                                               score_function=get_score,
                                               n_saved=3,
                                               save_as_state_dict=True,
                                               require_empty=False,
                                               create_dir=True)

            validator_eval.add_event_handler(ieng.Events.EPOCH_COMPLETED,
                                             model_saver, {model_name: model})

        @trainer.on(ieng.Events.EPOCH_STARTED)
        def reset_progress_iterations(engine: ieng.Engine):
            prog_bar_iters.clear()
            prog_bar_iters.n = 0
            prog_bar_iters.last_print_n = 0
            prog_bar_iters.start_t = time.time()
            prog_bar_iters.last_print_t = time.time()
            prog_bar_iters.total = len(engine.state.dataloader)

        @trainer.on(ieng.Events.ITERATION_COMPLETED)
        def log_training(engine: ieng.Engine):
            prog_bar_iters.update(1)

            num_iter = (engine.state.iteration - 1) % len(train_loader) + 1

            early_stop = np.isnan(engine.state.output) or np.isinf(
                engine.state.output)

            if num_iter % log_interval == 0 or num_iter == len(
                    train_loader) or early_stop:
                tqdm.tqdm.write(
                    'Epoch[{}] Iteration[{}/{}] Loss: {:.4f}'.format(
                        engine.state.epoch, num_iter, len(train_loader),
                        engine.state.output))

                x_pos = engine.state.epoch + num_iter / len(train_loader) - 1
                for scope_name, scope in performance_metrics.items():
                    for line in scope['lines']:
                        if line['update_rate'] == 'iteration':
                            line_label = '{} Train.'.format(line['line_label'])
                            line_value = engine.state.metrics[
                                line['metric_label']]

                            if engine.state.epoch > 1:
                                _visdom.plot_line(
                                    vis=vis,
                                    window_name=scope['window_name'],
                                    env=visdom_env_name,
                                    line_label=line_label,
                                    x_label=scope['x_label'],
                                    y_label=scope['y_label'],
                                    x=np.full(1, x_pos),
                                    y=np.full(1, line_value))

            if early_stop:
                tqdm.tqdm.write(
                    colored('Early stopping due to invalid loss value.',
                            'red'))
                trainer.terminate()

        def log_validation(engine: ieng.Engine, train: bool = True):

            if train:
                run_type = 'Train.'
                data_loader = train_loader
                validator = validator_train
            else:
                run_type = 'Eval.'
                data_loader = eval_loader
                validator = validator_eval

            prog_bar_validation = tqdm.tqdm(data_loader,
                                            desc=f'Validation {run_type}',
                                            file=orig_stdout,
                                            dynamic_ncols=True,
                                            leave=False)
            validator.run(prog_bar_validation)
            prog_bar_validation.clear()
            prog_bar_validation.close()

            tqdm_info = ['Epoch: {}'.format(engine.state.epoch)]
            for scope_name, scope in performance_metrics.items():
                for line in scope['lines']:
                    if line['update_rate'] == 'epoch':
                        try:
                            line_label = '{} {}'.format(
                                line['line_label'], run_type)
                            line_value = validator.state.metrics[
                                line['metric_label']]

                            _visdom.plot_line(vis=vis,
                                              window_name=scope['window_name'],
                                              env=visdom_env_name,
                                              line_label=line_label,
                                              x_label=scope['x_label'],
                                              y_label=scope['y_label'],
                                              x=np.full(1, engine.state.epoch),
                                              y=np.full(1, line_value),
                                              draw_marker=True)

                            tqdm_info.append('{}: {:.4f}'.format(
                                line_label, line_value))
                        except KeyError:
                            pass

            tqdm.tqdm.write('{} results - {}'.format(run_type,
                                                     '; '.join(tqdm_info)))

        @trainer.on(ieng.Events.EPOCH_COMPLETED)
        def log_validation_train(engine: ieng.Engine):
            log_validation(engine, True)

        @trainer.on(ieng.Events.EPOCH_COMPLETED)
        def log_validation_eval(engine: ieng.Engine):
            log_validation(engine, False)

            if engine.state.epoch == 1:
                summary = _utils.build_summary_str(
                    experiment_name=experiment_name,
                    model_short_name=model_name,
                    model_class=model_class,
                    model_args=model_args,
                    optimizer_class=optimizer_class,
                    optimizer_args=optimizer_args,
                    dataset_class=dataset_class,
                    dataset_args=dataset_args,
                    transforms=transforms,
                    epochs=epochs,
                    batch_train=batch_train,
                    log_interval=log_interval,
                    saved_models_path=saved_models_path,
                    scheduler_class=scheduler_class,
                    scheduler_args=scheduler_args)
                _visdom.create_summary_window(vis=vis,
                                              visdom_env_name=visdom_env_name,
                                              experiment_name=experiment_name,
                                              summary=summary)

            vis.save([visdom_env_name])

            prog_bar_epochs.update(1)

            if scheduler is not None:
                scheduler.step(engine.state.epoch)

        trainer.run(train_loader, max_epochs=epochs)

        if vis_pid is not None:
            tqdm.tqdm.write('Stopping visdom')
            os.kill(vis_pid, signal.SIGTERM)

        del vis
        del train_loader
        del eval_loader

        prog_bar_iters.clear()
        prog_bar_iters.close()

        prog_bar_epochs.clear()
        prog_bar_epochs.close()

    tqdm.tqdm.write('\n')
示例#10
0
def _stacked_ae_fit(stacked_ae,
                    train_data,
                    val_data,
                    batch_size,
                    optimizer,
                    max_epochs,
                    early_stopping=False,
                    check_every=100,
                    patience=10,
                    writer=None):
    """
    Function used to fit a stacked autoencoder on data.

    MSELoss used as lossfunction.

    ### Parameters
    - *ae*: Autoencoder, required
    + The autoencoder to fit.
    - *train_data*: torch.Tensor, required
    + Dataset with the data to train on where samples are in rows
    - *val_data*: torch.Tensor, required
    + Dataset with the data to validate on where samples are in rows
    - *optimizer*: torch.optim.Optimizer, required
    - *batch_size*: int, required
    - *max_epochs*: int, required
    + Training is at most run for this number of epochs
    - *early_stopping*: bool, required
    + Whether to use early stopping or not
    - *check_every*: int, optional, default=1500
    + Scores are calculated every *check_every* iteration.
    - *patience*: int, optional, default=10
    + If the validation score has not increased after *patience* checks
     and early stopping is True, training is stopped.
 
    ### Returns
    - *time*: Time taken for fitting
    """

    start_time = time()
    num_nets = stacked_ae.num_nets

    train_loss = StackedMSELoss(size_average=None,
                                reduce=None,
                                reduction='elementwise_mean')
    val_loss = StackedMSELoss(size_average=None,
                              reduce=None,
                              reduction='stacked_elementwise_mean')

    train_dataset = StackedTensorDataset(train_data, train_data, shuffle=True)
    train_loader = StackedDataLoader(train_dataset,
                                     batch_size=batch_size,
                                     shuffle=True)

    val_dataset = StackedTensorDataset(val_data, val_data, shuffle=False)
    val_loader = StackedDataLoader(val_dataset,
                                   batch_size=4 * batch_size,
                                   shuffle=False)

    logger = logging.getLogger('stacked_ae_fit')

    trainer = create_supervised_trainer(stacked_ae, optimizer, train_loss)

    run_av = metrics.RunningAverage(
        output_transform=lambda x: x / len(stacked_ae.net_list), alpha=0.9)
    run_av.attach(trainer, 'av_loss')
    pbar_train = ProgressBar()
    pbar_train.attach(trainer, ['av_loss'])

    val_loss_metric = StackedLossMetric(val_loss)
    evaluator = create_supervised_evaluator(
        stacked_ae, metrics={'stacked_loss': val_loss_metric})

    def score_function(evaluator):
        return -evaluator.state.metrics['stacked_loss']

    evaluator.register_events(*EarlyStoppingEvents)
    evaluator.add_event_handler(
        Events.COMPLETED,
        StackedEarlyStopping(patience, score_function, stacked_ae.num_nets))

    evaluator.num_converged = 0

    @evaluator.on(EarlyStoppingEvents.NET_CONVERGED)
    def update_count(evaluator):
        evaluator.num_converged += 1

    if early_stopping:
        evaluator.best_state = {}
        for name, tensor in stacked_ae.state_dict().items():
            # Create a new instance of the tensor on the cpu
            evaluator.best_state[name] = torch.tensor(tensor, device='cpu')

        @evaluator.on(EarlyStoppingEvents.HAS_IMPROVED)
        def store_states(evaluator):
            for name, tensor in stacked_ae.state_dict().items():
                # Create a new instance of the tensor on the cpu
                evaluator.best_state[name] = torch.tensor(tensor, device='cpu')

        @evaluator.on(EarlyStoppingEvents.EARLY_STOPPING_DONE)
        def terminate(evaluator):
            trainer.terminate()

    class CustomEvents(Enum):
        N_ITERATIONS_COMPLETED = "n_iterations_completed"

    trainer.register_events(CustomEvents['N_ITERATIONS_COMPLETED'])

    @trainer.on(Events.ITERATION_COMPLETED, check_every)
    def every_n(trainer, check_every):
        if trainer.state.iteration % check_every == 0:
            trainer.fire_event(CustomEvents.N_ITERATIONS_COMPLETED)

    @trainer.on(CustomEvents.N_ITERATIONS_COMPLETED)
    def run_validation(trainer):
        iteration = trainer.state.iteration
        epoch = trainer.state.epoch

        evaluator.run(val_loader, max_epochs=1)

        msg = (("Iteration {} (Epoch {})" + "training error:     {:.5f}, " +
                "mean validation error:   {:.5f}, " +
                "{}/{} nets convered.").format(
                    iteration, epoch, trainer.state.metrics['av_loss'],
                    evaluator.state.metrics['stacked_loss'].mean(),
                    evaluator.num_converged, num_nets))

        logger.info(msg)

        # clear some memory
        evaluator.state.output = None

        if writer is not None:
            writer.add_scalar('train_error_estimate', trainer.state.output,
                              iteration)
        # Write to tensorboard
        for i, loss in enumerate(evaluator.state.metrics['stacked_loss']):
            if writer is not None:
                writer.add_scalar('val_error_{}'.format(i), loss, iteration)

    trainer.run(train_loader, max_epochs=max_epochs)

    if early_stopping:
        # Load the best states
        stacked_ae.load_state_dict(evaluator.best_state)
        stacked_ae.update_list()

    train_time = time() - start_time

    if early_stopping and evaluator.num_converged < num_nets:
        msg = ("Only {}/{} nets converged".format(evaluator.num_converged,
                                                  num_nets))
        logger.warning(msg)

    msg = ('Trained for {} epochs, {}/{} nets converged.'
           '\n Training took {}s'.format(trainer.state.epoch,
                                         evaluator.num_converged, num_nets,
                                         train_time))
    logger.info(msg)
    return (train_time)
示例#11
0
    def fit(self,
            train_loader: _data.DataLoader,
            val_loader: _data.DataLoader,
            epochs: int = 1,
            batches: int = None,
            learning_rate: float = 1e-3) -> None:
        if batches is None:
            batches = VocalExtractor.get_number_of_batches(train_loader)

        loss_fn = nn.BCELoss()
        optimizer = _optim.Adam(self.model.parameters(), lr=learning_rate)

        trainer = _engine.create_supervised_trainer(self.model,
                                                    optimizer,
                                                    loss_fn,
                                                    device=self.device)

        _metrics.RunningAverage(output_transform=lambda x: x,
                                device=self.device).attach(trainer, 'loss')
        progressbar = _chandlers.ProgressBar(
            bar_format=
            "{desc}[{n_fmt}/{total_fmt}] {percentage:3.0f}%|{bar:20}| "
            "[{elapsed}<{remaining}]{postfix}",
            persist=True,
            ascii=" #")
        progressbar.attach(trainer, ['loss'])

        def get_metrics_fn() -> Dict[str, _metrics.Metric]:
            def rounded_transform(output):
                y_pred, y = output
                return torch.round(y_pred), y

            transform = rounded_transform
            accuracy = _metrics.Accuracy(transform, device=self.device)
            precision = _metrics.Precision(transform, device=self.device)
            recall = _metrics.Recall(transform, device=self.device)
            f1 = precision * recall * 2 / (precision + recall + 1e-20)
            return {
                'loss': _metrics.Loss(loss_fn),
                'accuracy': accuracy,
                'precision': precision,
                'recall': recall,
                'f1': f1
            }

        evaluator = _engine.create_supervised_evaluator(
            self.model, metrics=get_metrics_fn(), device=self.device)

        score_fn_name = "f1"

        def score_function(engine: _engine.Engine):
            return engine.state.metrics[score_fn_name]

        best_model_saver = _handlers.ModelCheckpoint(
            dirname="best_models",
            filename_prefix="vocal_extractor",
            score_name=score_fn_name,
            score_function=score_function,
            n_saved=5,
            create_dir=True)
        evaluator.add_event_handler(_engine.Events.COMPLETED, best_model_saver,
                                    {"model": self.model})

        each_model_saver = _handlers.ModelCheckpoint(
            dirname="all_models",
            filename_prefix="vocal_extractor",
            score_name=score_fn_name,
            score_function=score_function,
            n_saved=None,
            create_dir=True)
        evaluator.add_event_handler(_engine.Events.COMPLETED, each_model_saver,
                                    {"model": self.model})

        @trainer.on(_engine.Events.EPOCH_COMPLETED)
        def on_epoch_completed(engine: _engine.Engine) -> None:
            metrics = VocalExtractor.compute_metrics(val_loader, evaluator)
            string = ", ".join(f"val_{k}: {v:.4f}" for k, v in metrics.items())
            progressbar.log_message(string + "\n")

        with _tb_logger.TensorboardLogger(log_dir="tb_logs") as tb_logger:
            global_step = _tb_logger.global_step_from_engine(trainer)

            train_running_loss_log_handler = _tb_logger.OutputHandler(
                tag="training", output_transform=lambda x: {'running_loss': x})
            tb_logger.attach(trainer,
                             log_handler=train_running_loss_log_handler,
                             event_name=_engine.Events.ITERATION_COMPLETED)

            val_metrics_log_handler = _tb_logger.OutputHandler(
                tag="validation",
                metric_names=[name for name, _ in get_metrics_fn().items()],
                global_step_transform=global_step)
            tb_logger.attach(evaluator,
                             log_handler=val_metrics_log_handler,
                             event_name=_engine.Events.EPOCH_COMPLETED)

            tb_logger.attach(
                trainer,
                log_handler=_tb_logger.OptimizerParamsHandler(optimizer),
                event_name=_engine.Events.ITERATION_STARTED)

            tb_logger.attach(trainer,
                             log_handler=_tb_logger.WeightsScalarHandler(
                                 self.model),
                             event_name=_engine.Events.ITERATION_COMPLETED)
            tb_logger.attach(trainer,
                             log_handler=_tb_logger.WeightsHistHandler(
                                 self.model),
                             event_name=_engine.Events.EPOCH_COMPLETED)

            tb_logger.attach(trainer,
                             log_handler=_tb_logger.GradsScalarHandler(
                                 self.model),
                             event_name=_engine.Events.ITERATION_COMPLETED)
            tb_logger.attach(trainer,
                             log_handler=_tb_logger.GradsHistHandler(
                                 self.model),
                             event_name=_engine.Events.EPOCH_COMPLETED)

        torchsummary.summary(self.model,
                             input_size=(1, self.freq_bins, self.time_bins),
                             batch_size=train_loader.batch_size,
                             device=self.device)
        trainer.run(data=train_loader, epoch_length=batches, max_epochs=epochs)