示例#1
0
def testInverseMul():
    ans = 5 * I
    A = Tensor('A', rank=2, has_inv=True)
    A_I = Inverse(A)
    e = 5 * A
    assert (A_I * e == ans)
    assert (e * A_I == ans)
    e = 5 * A_I
    assert (A * e == ans)
    assert (e * A == ans)

    ans = 5 * one
    p = Tensor('p', rank=1)
    pAp = T(p) * A * p
    pAp_I = Inverse(pAp)
    e = 5 * pAp
    assert (e * pAp_I == ans)
    assert (pAp_I * e == ans)
    e = 5 * pAp_I
    assert (e * pAp == ans)
    assert (pAp * e == ans)

    e = 5 * pAp * A
    assert (A_I * e == 5 * pAp * I)
    assert (e * pAp_I == 5 * A)
示例#2
0
def test_vec_solve():
    mu_12 = Tensor('mu_12', rank=0)
    p_1, p_2 = map(lambda x: Tensor(x, rank=1), ['p_1', 'p_2'])
    A = Tensor('A', rank=2)
    print solve_vec_eqn(
        -mu_12 * (T(p_1) * A * p_2) - mu_12 * (T(p_2) * A * p_1) +
        (T(p_2) * A * p_1), mu_12)
def test_chronos_cg():
    skip("Test takes too long")
    delta_1, omega_2, pi_1, pi_2, mu_12 = map(lambda x: Tensor(x, rank=0), \
        ['delta_1', 'omega_2', 'pi_1', 'pi_2', 'mu_12'])
    r_1, r_2, q_1, q_2, p_1, p_2, x_1, x_2 = map(lambda x: Tensor(x, rank=1), \
        ['r_1', 'r_2', 'q_1', 'q_2', 'p_1', 'p_2', 'x_1', 'x_2'])
    A, R_0, P_0 = map(lambda x: Tensor(x, rank=2), ['A', 'R_0', 'P_0'])

    # Specify which variables are known
    knowns = [pi_1, p_1, r_1, q_1, x_1, A, R_0, P_0]

    # Now try the chronos variant and repeat.
    chronos_eqns = [
        r_2 - r_1 - delta_1 * q_1,
        q_2 - A * p_2,
        p_2 - r_2 + p_1 * mu_12,
        q_2 - A * r_2 + q_1 * mu_12,
        x_2 - x_1 - delta_1 * p_1,
        omega_2 - T(r_2) * r_2,
        pi_2 - T(p_2) * A * p_2,
        T(R_0) * r_2,
        T(r_1) * r_2,
        T(P_0) * A * p_2,
        T(p_1) * A * p_2,
        T(p_2) * A * p_2 - T(r_2) * A * r_2 + T(mu_12) * pi_1 * mu_12,
    ]
    run_cg_algorithms(chronos_eqns, knowns)
示例#4
0
def test_5 ():
    q, r, s = map(lambda x: Tensor(x, rank=1), 'qrs')
    s_t = Transpose(s)
    delta = Tensor('delta', rank=0)
    eqn1 = r - s - q * delta
    eqn2 = s_t * r

    print assump_solve([eqn1, eqn2], [r, q])
示例#5
0
def test_forward_solve():
    q, r, s = map(lambda x: Tensor(x, rank=1), 'qrs')
    delta = Tensor('delta', rank=0)
    eqn1 = s + q
    eqn2 = delta * r - q
    sol_dict = forward_solve([eqn1, eqn2], [delta, r])
    print "sol_dict should be: {q: delta*r, s: -q }"
    print "  actual:", sol_dict
示例#6
0
def test_mul_inverse():
    delta_11 = Tensor('delta_11', 0)
    r_1, p_1 = map(lambda x: Tensor(x, 1), ['r_1', 'p_1'])
    A = Tensor('A', 2)
    a = Tensor('a', 0)

    expr = (-(T(p_1) * A * p_1) * (T(p_1) * A * r_1) * a + (T(p_1) * A * r_1))
    expr = expr.subs(a, (T(p_1) * A * p_1)**-1)
    assert (simplify(expr) == S(0))
示例#7
0
def test_3 ():
    q, r, s = map(lambda x: Tensor(x, rank=1), 'qrs')
    s_t = Transpose(s)
    delta = Tensor('delta', rank=0)
    eqn1 = r - s - q * delta
    eqn2 = s_t * r

    print forward_solve([eqn1, eqn2], [r, s, q])
    print forward_solve([eqn1, eqn2], [delta, s, q])
    print forward_solve([eqn2, eqn1], [delta, s, q])
示例#8
0
def test_0 ():
    A = Tensor('A', rank=2, has_inv=True)
    x = Tensor('x', rank=1)
    y = Tensor('y', rank=1)
    alpha = Tensor('alpha', rank=0)
    beta = Tensor('beta', rank=0)
    eqn = alpha * A * x + beta * y
    print eqn, "rank:", expr_rank(eqn)
    print "solution for y", solve_vec_eqn(eqn, y)
    print "solution for x", solve_vec_eqn(eqn, x)
示例#9
0
def test_backward_sub():
    q, r, s = map(lambda x: Tensor(x, rank=1), 'qrs')
    s_t = Transpose(s)
    delta = Tensor('delta', rank=0)
    eqn1 = r - s - q * delta
    eqn2 = s_t * r
    sol_dict, failed_var = backward_sub([eqn1, eqn2], [q, s], [r, delta])

    print sol_dict, failed_var

    sol_dict, failed_var = backward_sub([eqn1, eqn2], [q, s], [delta, r])
    print sol_dict, failed_var
示例#10
0
def testUpdate():
    k = Symbol('k')
    A = Tensor('A', 2)
    A_TL = A.update(l_ind='TL')
    A_TL_2 = A_TL.update(u_ind='2', rank=2)
    A_01 = A_TL.update(l_ind='01', shape=(k, k))
    a_02 = T(A_TL.update(l_ind='02', shape=(1, k), rank=1))

    assert (A_TL == Tensor('A_TL', 2))
    assert (A_TL_2 == Tensor('A_TL^2', 2))
    assert (A_01 == Tensor('A_01', 2, shape=(k, k)))
    assert (a_02 == T(Tensor('a_02', 1, shape=(1, k))))
示例#11
0
def test_overdetermined_forward_solve():
    pi_1, pi_2, mu_12 = \
        map(lambda x: Tensor(x, rank=0),
            ['pi_1', 'pi_2', 'mu_12'])
    r_2, p_1, p_2 = \
        map(lambda x: Tensor(x, rank=1),
            ['r_2', 'p_1', 'p_2'])
    A = Tensor('A', rank=2)

    eqns = [ pi_2 - T(r_2) * A * r_2 + T(mu_12) * pi_1 * mu_12,
             p_2 - r_2 + p_1 * mu_12,
             pi_2 - T(p_2) * A * p_2,
            ]
    return forward_solve(eqns, [r_2, p_1, mu_12, A, pi_1], True)
示例#12
0
def test_algebra():
    delta_1, omega_2, pi_1, pi_2, gamma_2, mu_12 = \
        map(lambda x: Tensor(x, rank=0),
            ['delta_1', 'omega_2', 'pi_1', 'pi_2', 'gamma_2', 'mu_12'])
    r_1, r_2, q_1, q_2, p_1, p_2, s_1, s_2 = \
        map(lambda x: Tensor(x, rank=1),
            ['r_1', 'r_2', 'q_1', 'q_2', 'p_1', 'p_2', 's_1', 's_2'])
    A, R_0, P_0 = map(lambda x: Tensor(x, rank=2), ['A', 'R_0', 'P_0'])

    eqn = -2 * (T(p_1) * A * r_2) / (T(p_1) * A * p_1) * (T(p_1) * A * r_2)
    eqn -= -2 * (T(p_1) * A * r_2) * (T(p_1) * A * r_2) / (T(p_1) * A * p_1)
    assert(eqn == S(0))

    assert(T(p_1) * A * r_2 == T(r_2) * A * p_1)
示例#13
0
def testOne():
    A = Tensor('A', 2)
    a = Tensor('a', 1)
    alpha = Tensor('alpha', 0)
    ONE = Tensor('1', 2)
    one = Tensor('1', 0)

    assert (A * ONE == A)
    assert (ONE * A == A)

    assert (A * one == A)
    assert (one * A == A)
    assert (a * one == a)
    assert (one * a == a)
    assert (alpha * one == alpha)
    assert (one * alpha == alpha)
示例#14
0
def test_reg_cg():
    delta_1, mu_12 = map(lambda x: Tensor(x, rank=0), ['delta_1', 'mu_12'])
    r_1, r_2, p_1, p_2, x_1, x_2 = map(lambda x: Tensor(x, rank=1), \
                                   ['r_1', 'r_2', 'p_1', 'p_2', 'x_1', 'x_2'])
    A = Tensor('A', rank=2)

    # Specify which variables are known
    knowns = [p_1, r_1, x_1, A]

    # Specify the CG eqns (coming from a 4x4 PME)
    cg_eqns = [delta_1 * A * p_1 - r_1 + r_2,
               p_2 - r_2 + p_1 * mu_12,
               x_2 - x_1 - delta_1 * p_1,
               T(r_1) * r_2,
               T(p_1) * A * p_2,
               ]
    run_cg_algorithms(cg_eqns, knowns)
示例#15
0
def testZero():
    A = Tensor('A', 2)
    a = Tensor('a', 1)
    alpha = Tensor('alpha', 0)
    Z = Tensor('0', 2)
    z = Tensor('0', 1)
    z_0 = Tensor('0', 0)

    assert (A + Z == A)
    assert (Z + A == A)
    assert (A * Z == Z)
    assert (Z * A == Z)

    assert (a + z == a)
    assert (z + a == a)
    assert (A * z == z)
    assert (T(a) * z == z_0)
    assert (T(z) * a == z_0)
    assert (z * T(a) == Z)
    assert (a * T(z) == Z)

    assert (alpha + z_0 == alpha)
    assert (alpha * z_0 == z_0)
    assert (alpha * z == z)
    assert (alpha * Z == Z)

    assert (z_0 * A == Z)
    assert (z_0 * a == z)
    assert (A + z_0 == A)
    assert (z_0 + A == A)
示例#16
0
def get_chronos_eqns_3 ():
    delta_1, omega_2, pi_1, pi_2, gamma_2, mu_12 = \
        map(lambda x: Tensor(x, rank=0),
            ['delta_1', 'omega_2', 'pi_1', 'pi_2', 'gamma_2', 'mu_12'])
    r_1, r_2, q_1, q_2, p_1, p_2, s_1, s_2 = \
        map(lambda x: Tensor(x, rank=1),
            ['r_1', 'r_2', 'q_1', 'q_2', 'p_1', 'p_2', 's_1', 's_2'])
    A, R_0, P_0 = map(lambda x: Tensor(x, rank=2), ['A', 'R_0', 'P_0'])

    eqns = [r_2 - r_1 - delta_1 * q_1,
            q_2 - A * p_2,
            p_2 - r_2 + p_1 * mu_12,
            q_2 - A * r_2 + q_1 * mu_12,
            omega_2 - T(r_2) * r_2,
            pi_2 - T(p_2) * A * p_2,
            pi_2 - T(r_2) * A * r_2 + T(mu_12) * pi_1 * mu_12,
            T(R_0) * r_2,
            T(r_1) * r_2,
            T(P_0) * A * p_2,
            T(p_1) * A * p_2,
            ]
    knowns = [p_1, r_1, q_1, pi_1, A, R_0, P_0]
    return eqns, knowns
示例#17
0
def test_sol_without_recomputes ():
    a, b, c, d = map(lambda x: Tensor(x, rank=0), 'abcd')
    sol_dict = {a: b + c*d, b: c*d}
    ord_unk = [a, b]
    assert(sol_without_recomputes((sol_dict, ord_unk)) == (sol_dict, ord_unk))
    sol_dict = {a: b + c*d, b: c*d}
    ord_unk = [b, a]
    assert(sol_without_recomputes((sol_dict, ord_unk)) is None)
    sol_dict = {a: set([b + c*d]), b: set([c*d])}
    ord_unk = [b, a]
    assert(sol_without_recomputes((sol_dict, ord_unk)) is None)
    sol_dict = {a: set([b + c*d, b*d]), b: set([c*d])}
    ord_unk = [b, a]
    assert(sol_without_recomputes((sol_dict, ord_unk)) == \
           ({a: set([b*d]), b: set([c*d])}, ord_unk))
    sol_dict = {a: set([b + c*d, b*d]), b: set([c*d])}
    ord_unk = [a, b]
    assert(sol_without_recomputes((sol_dict, ord_unk)) == (sol_dict, ord_unk))
示例#18
0
def test_2 ():
    from sympy import expand, S
    A = Tensor('A', rank=2)
    A_t = Transpose(A)
    B = Tensor('B', rank=2)
    x = Tensor('x', rank=1)
    y = Tensor('y', rank=1)
    x_t = Transpose(x)
    y_t = Transpose(y)
    alpha = Tensor('alpha', rank=0)
    beta = Tensor('beta', rank=0)
    teqn = Transpose((A + B) * x)
    print "teqn.expand: ", teqn.expand(), "should be x'*A' + x'*B'"

    print expand(S(2) * beta * (alpha * A + beta * B) * x), "should be 2*beta**2*B*x + 2*alpha*beta*A*x"
    print expr_shape(expand(S(2) * A * x)), "should be (n, 1)"
示例#19
0
文件: args.py 项目: pmwalker/ignition
def iterative_arg(name, rank, *args, **kws):
    ten = Tensor(name, rank)
    arg_src = kws.get("arg_src", PObj.ARG_SRC["Input"])
    if type(arg_src) is str:
        arg_src = PObj.ARG_SRC[arg_src]
    part_suffix = kws.get("part_suffix", None)
    part_fun = kws.get("part_fun", None)
    repart_fun = kws.get("repart_fun", None)
    fuse_fun = kws.get("fuse_fun", None)
    if part_suffix is None:
        part_suffix = PART_SUFFIX_DEFAULT
        if part_fun is not None:
            part_suffix = get_part_suffix(part_fun.__name__)
        elif repart_fun is not None:
            part_suffix = get_part_suffix(repart_fun.__name__)
        elif fuse_fun is not None:
            part_suffix = get_part_suffix(fuse_fun.__name__)
    if part_fun is None:
        try:
            part_fun = getattr(iterative_prules, "Part_" + part_suffix)()
        except AttributeError:
            raise ValueError("Unable to find partition function for argument.")
    if repart_fun is None:
        try:
            repart_fun = getattr(iterative_prules, "Repart_" + part_suffix)()
        except AttributeError:
            raise ValueError(
                "Unable to find repartition function for argument.")
    if fuse_fun is None:
        try:
            fuse_fun = getattr(iterative_prules, "Fuse_" + part_suffix)()
        except AttributeError:
            raise ValueError("Unable to find fuse function for argument.")
    return PObj(ten,
                part_fun=part_fun,
                repart_fun=repart_fun,
                fuse_fun=fuse_fun,
                arg_src=arg_src)
示例#20
0
from ignition.flame.tensors import (numpy_print, latex_print, T, Tensor)

delta_1, omega_2, pi_1, pi_2, gamma_2, mu_12 = \
    map(lambda x: Tensor(x, rank=0),
        ['delta_1', 'omega_2', 'pi_1', 'pi_2', 'gamma_2', 'mu_12'])
r_1, r_2, q_1, q_2, p_1, p_2, s_1, s_2, x_1 = \
    map(lambda x: Tensor(x, rank=1),
        ['r_1', 'r_2', 'q_1', 'q_2', 'p_1', 'p_2', 's_1', 's_2', 'x_1'])
A, R_0, P_0 = map(lambda x: Tensor(x, rank=2), ['A', 'R_0', 'P_0'])


def test_numpy_print():
    assert (numpy_print(-mu_12 * p_1 + r_2) == "-dot(mu_12, p_1) + r_2")
    assert (numpy_print(delta_1 * A * p_1 +
                        r_1) == "dot(delta_1, dot(A, p_1)) + r_1")
    assert (numpy_print(delta_1 * p_1 + x_1) == "dot(delta_1, p_1) + x_1")
    assert(numpy_print((T(r_1) * r_1) / (T(r_1) * A * p_1)) == \
                       "dot(dot((r_1).transpose(), r_1), 1.0 / (dot(dot((p_1).transpose(), A), r_1)))")
    assert(numpy_print((T(p_1) * A * r_2) / (T(p_1) * A * p_1)) == \
                       "dot(dot(dot((p_1).transpose(), A), r_2), 1.0 / (dot(dot((p_1).transpose(), A), p_1)))")


def test_latex_print():
    assert (latex_print(-mu_12 * p_1 + r_2) == "-\mu_{12} p_1 + r_2")
    assert (latex_print(delta_1 * A * p_1 + r_1) == "\delta_1 A p_1 + r_1")
    assert (latex_print(delta_1 * p_1 + x_1) == "\delta_1 p_1 + x_1")
    assert(latex_print((T(r_1) * r_1) / (T(r_1) * A * p_1)) == \
           "{r_1}^t r_1 1.0 / ({p_1}^t A r_1)")
    assert(latex_print((T(p_1) * A * r_2) / (T(p_1) * A * p_1)) == \
           "{p_1}^t A r_2 1.0 / ({p_1}^t A p_1)")
示例#21
0
def testZeroOne():
    ZERO = Tensor('0', 2)
    One = Tensor('1', 1)
    k = Tensor('k', 1)
    assert (k - ZERO * One == k)
示例#22
0
def test_numerator ():
    a, b, c = map(lambda x: Tensor(x, rank=0), 'abc')
    expr = (a + b) / c
    sol = solve_vec_eqn(expr, a)
    assert(sol == -b)
示例#23
0
def test_cyclic_solve ():
    a, b = map(lambda x: Tensor(x, rank=0), 'ab')
    assert(backward_sub([a + b], [], [a, b]) == (None, b))