示例#1
0
    def build_feature_tensor(self):
        """ Computes the inception tensor
    
    Inputs:
      self.images
    
    Outputs:
      self.inception_output
    """

        self.inception_output = image_embedding.inception_v3(
            self.images,
            trainable=self.train_inception,
            is_training=self.is_training())

        # Brandon Trabucco 2018.06.13: attention is a 4 tensor of shape [batch_size, height, width, 1]
        self.build_attention_tensor(
            tf.zeros([
                tf.shape(self.inception_output)[0],
                self.config.num_lstm_units * 2
            ],
                     dtype=tf.float32))

        # Compute a prelimiary context tensor for the image
        self.build_context_tensor()

        self.inception_variables = tf.get_collection(
            tf.GraphKeys.GLOBAL_VARIABLES, scope="InceptionV3")
示例#2
0
    def testTrainableTrueIsTrainingFalse(self):
        embeddings = image_embedding.inception_v3(self._images,
                                                  trainable=True,
                                                  is_training=False)
        self.assertEqual([self._batch_size, 2048],
                         embeddings.get_shape().as_list())

        self._verifyParameterCounts()
        self._assertCollectionSize(376, tf.GraphKeys.GLOBAL_VARIABLES)
        self._assertCollectionSize(188, tf.GraphKeys.TRAINABLE_VARIABLES)
        self._assertCollectionSize(0, tf.GraphKeys.UPDATE_OPS)
        self._assertCollectionSize(94, tf.GraphKeys.REGULARIZATION_LOSSES)
        self._assertCollectionSize(0, tf.GraphKeys.LOSSES)
        self._assertCollectionSize(23, tf.GraphKeys.SUMMARIES)