def drawSquaresOnTriangleCells(image, triangle_contours): # Converting the triangle contours into squares for cnt in triangle_contours: # todo: delete if (False): simage = convertToColor(image) simage = cv2.drawContours(simage, [cnt], -1, (0, 255, 0), 5) show(simage) # curr vars cX, cY = getContourCenter(cnt) approx = getContourApprox(cnt) middleVertex, isUpper = getMiddleVertex(approx, (cX, cY)) # twin twin = getTwinContour(cnt, triangle_contours) twinCenterX, twinCenterY = getContourCenter(twin) twinApprox = getContourApprox(twin) twinMiddleVertex, twinIsUpper = getMiddleVertex( twinApprox, (twinCenterX, twinCenterY)) # upper if (isUpper and not twinIsUpper): rightVertex = getRightVertex(approx, middleVertex) leftVertex = getLeftVertex(approx, middleVertex) twinRightVertex = getRightVertex(twinApprox, twinMiddleVertex) twinLeftVertex = getLeftVertex(twinApprox, twinMiddleVertex) topLeft = getTopLeft(leftVertex, twinLeftVertex) bottomRight = getBottomRight(rightVertex, twinRightVertex) # Drawing a square image = drawSquare(image, topLeft, middleVertex[0], bottomRight, twinMiddleVertex[0]) # cv2.circle(image, (topLeft[0], topLeft[1]), 20, (255, 0, 0), -1) # cv2.circle(image, (bottomRight[0], bottomRight[1]), 20, (0, 0, 255), -1) # lower # else: # cv2.circle(image, (middleVertex[0][0], middleVertex[0][1]), 20, (255, 255, 0), -1) # Handling square cells boardSize = image.shape[0] * image.shape[1] # getting all square contours square_contours = getAllSquares(getAllContours(image)) square_contours = list( filter(lambda x: containsAnyContour(x, triangle_contours), square_contours)) # filter the board contour if exists square_contours = list( filter(lambda x: not checkIfFarBiggerThanAreaSize(boardSize, x), square_contours)) # filter contours very below the average (noise contour) contourAvgSize = sum(cv2.contourArea(item) for item in square_contours) / float( len(square_contours)) square_contours = list( filter(lambda x: not checkIfVeryBelowAreaSize(contourAvgSize, x), square_contours)) return square_contours
def handleSquareCells(origCropedImage, squares, triangles): blockedCells, regularCells = [], [] image = convertToGray(origCropedImage.copy()) if (False): stam = convertToColor(image.copy()) stam = cv2.drawContours(stam, squares, -1, (255, 0, 0), 3) show(stam) # excluding all lines and other contours which are not cell square nativeSquares = list( filter(lambda x: not containedByOtherContour(x, squares), squares)) # getting all squares which doesn't contain triangles nativeSquares = list( filter(lambda x: not containsAnyContour(x, triangles), nativeSquares)) if (False): stam = convertToColor(image.copy()) stam = cv2.drawContours(stam, nativeSquares, -1, (255, 0, 0), 3) show(stam) # getting all square contours nativeSquares = list( filter( lambda x: not checkIfFarBiggerThanAreaSize( image.shape[0] * image.shape[1], x), nativeSquares)) ret, thresh = cv2.threshold(image, 170, 255, cv2.THRESH_BINARY) border = 5 for square in nativeSquares: if (False): stam = convertToColor(image.copy()) stam = cv2.drawContours(stam, [square], -1, (255, 0, 0), 3) show(stam) x, y, w, h = getRect(square) cell = thresh[y + border:y + h - border, x + border:x + w - border] if percentageOfWhitePixels(cell) > 30: regularCells.append(square) else: blockedCells.append(square) return blockedCells, regularCells
def convertSemiCellsToCells(image): image = convertToGray(image) #show(image) image = postForTriangles(image) #show(image) #TODO: no converting to color if (False): stam1 = getAllSquares(getAllContours(image)) stam = convertToColor(image) stam = cv2.drawContours(stam, stam1, -1, (0, 255, 0), 5) show(stam) # getting all triangle contours triangle_contours = getAllTriangles(getAllContours(image)) if (False): stam = convertToColor(image) stam = cv2.drawContours(stam, triangle_contours, -1, (0, 255, 0), 5) show(stam) if (len(triangle_contours) == 0): return image, triangle_contours # filter contours very below the average (noise contour) contourAvgSize = sum(cv2.contourArea(item) for item in triangle_contours) / float( len(triangle_contours)) triangle_contours = list( filter(lambda x: not checkIfVeryBelowAreaSize(contourAvgSize, x), triangle_contours)) if (False): simage = convertToColor(image) simage = cv2.drawContours(simage, triangle_contours, -1, (0, 255, 0), 5) show(simage) onlyTriangleSquares = drawSquaresOnTriangleCells(image, triangle_contours) return onlyTriangleSquares, triangle_contours
def drawSquare(image, topLeft, topRight, bottomRight, bottomLeft): colorOut = (255, 255, 255) # white colorIn = (0, 0, 0) # black outWidth = SAFETY_PIXEL_WIDTH inWidth = SAFETY_PIXEL_WIDTH image = convertToColor(image) # Drawing the outer border # top right to bottom right drawLine(image, topRight, bottomRight, colorOut, outWidth) # bottom right to bottom left drawLine(image, bottomRight, bottomLeft, colorOut, outWidth) # bottom left to top left drawLine(image, bottomLeft, topLeft, colorOut, outWidth) # top left to top right drawLine(image, topLeft, topRight, colorOut, outWidth) # Drawing the inner border # top right to bottom right drawLine(image, (topRight[0] - outWidth, topRight[1] + outWidth), (bottomRight[0] - outWidth, bottomRight[1] - outWidth), colorIn, inWidth) # bottom right to bottom left drawLine(image, (bottomRight[0] - outWidth, bottomRight[1] - outWidth), (bottomLeft[0] + outWidth, bottomLeft[1] - outWidth), colorIn, inWidth) # bottom left to top left drawLine(image, (bottomLeft[0] + outWidth, bottomLeft[1] - outWidth), (topLeft[0] + outWidth, topLeft[1] + outWidth), colorIn, inWidth) # top left to top right drawLine(image, (topLeft[0] + outWidth, topLeft[1] + outWidth), (topRight[0] - outWidth, topRight[1] + outWidth), colorIn, inWidth) image = convertToGray(image) return image
def handleTriangleImage(origCroped, image, contour, minX, minY, alon): origGray = convertToGray(origCroped) if (True): # since we draw a square outside the triangle, we need to look for it's inner contours kernel = np.ones((3, 3), np.uint8) #image = cv2.erode(image, kernel, iterations=3) #image = cv2.GaussianBlur(image, (3, 3), 0) #show(image) stam = thresholdify(convertToGray(origCroped)) stam = cv2.GaussianBlur(stam, (3, 3), 0) if (alon[0] == 2 and alon[1] == 0): a = 5 #show(stam) digitContours = getAllContours(stam) # excluding all lines and other contours which are not cell square digitContours = list( filter(lambda x: not containedByOtherContour(x, digitContours), digitContours)) digits = [] for digitContour in digitContours: (x, y, w, h) = rect = getRect(digitContour) digitHeightInPercent, digitWidthInPercent = h / image.shape[ 0], w / image.shape[1] # not the crossing line of the triangle if ((digitWidthInPercent > 0.10 and digitWidthInPercent < 0.4) and (digitHeightInPercent > 0.10 and digitHeightInPercent < 0.7) and (x > 5 and y > 5)): # todo: debug if (alon[0] == 2 and alon[1] == 0): stam1 = convertToColor(stam) cv2.drawContours(stam1, [digitContour], -1, (255, 0, 0), 5) #show(stam1) digitCenter = getContourCenter(digitContour) # since we croped, we want to test the original image X,Y of the contour origDigitCenter = (digitCenter[0] + minX, digitCenter[1] + minY) # TODO: delete these 4 lines # cv2.drawContours(croped, [digitContour], -1, (0, 0, 0), 5) # show(croped) if (isPointInContour(origDigitCenter, contour)): global alonW global alonH alonW.append(digitWidthInPercent) alonH.append(digitHeightInPercent) digits.append({'contour': digitContour, 'rect': rect}) # sorting the digits from the left to the right (x axis) digits = sorted(digits, key=lambda x: x['rect'][0]) # todo: delete imageRect references #(imageX, imageY, w, h) = imageRect safeBorder = 3 digitsWithBorder = [] for digit in digits: (x, y, w, h) = digit['rect'] digitImage = image[y - safeBorder:y + h + safeBorder, x - safeBorder:x + w + safeBorder] if (False): p = cv2.GaussianBlur(digitImage, (7, 7), 0) thresh = cv2.adaptiveThreshold(p.astype(np.uint8), 255, cv2.ADAPTIVE_THRESH_MEAN_C, cv2.THRESH_BINARY, 11, 10) # 3 #TODO: was 11,10 or 11,7 or 5,2 #show(digitImage) #p = putDigitInCenter(digitImage) #show(p) #value = getDigitsFromMNIST([p]) #show(p, str(value[0])) # show(digitImage) # since we croped the digit from the croped image (minY) # since we croped the board from the original image (imageY). same goes for X # digitImage = origImage[y + minY + imageY - safeBorder: y + h + minY + imageY + safeBorder, # x + minX + imageX - safeBorder: x + w + minX + imageX + safeBorder] # show(255 - digitImage) # digitImage = convertToGray(255 - digitImage) digitImage = putDigitInCenter(digitImage) digitImage = cv2.resize(digitImage, (sizeToMNIST, sizeToMNIST)) #show(digitImage) #thresh = cv2.adaptiveThreshold(digitImage.astype(np.uint8), 255, cv2.ADAPTIVE_THRESH_MEAN_C, #cv2.THRESH_BINARY, 3, 10) #digitImage = cv2.GaussianBlur(digitImage, (7, 7), 0) #digitImage = cv2.blur(digitImage, (3, 3)) digitImage = cv2.bilateralFilter(digitImage, 17, 75, 75) #show(digitImage) #show (thresh) #show(digitImage) digitsWithBorder.append(digitImage) if (len(digitsWithBorder) == 0): return {'hasValue': True, 'data': None} else: return {'hasValue': False, 'data': digitsWithBorder}