示例#1
0
def make_reference(files, reg, params, reference_image='ref.fits'):
    seeing = {}
    sky = {}
    ref_seeing = 1000

    #
    # Have we specified the files to make the reference with?
    #
    if params.ref_include_file:

        ref_list = []
        for line in open(params.ref_include_file, 'r'):
            for f in files:
                if f.name == line.split()[0]:
                    ref_list.append(f)
                    print f.name, f.fw, f.signal
                    if f.fw < ref_seeing:
                        ref_sky = f.sky
                        ref_seeing = f.fw
                        best_seeing_ref = f

    else:

        #
        # We try to choose the best images
        #
        reference_exclude = []
        if params.ref_exclude_file:
            for line in open(params.ref_exclude_file, 'r'):
                reference_exclude.append(line.split()[0])

        sig = []
        for f in files:
            sig.append(f.signal)

        sig = np.asarray(sig)
        sigcut = np.mean(sig) - 2.0 * np.std(sig)
        print 'signal: mean, std, cut = ', np.mean(sig), np.std(sig), sigcut

        print 'Searching for lowest-background image'
        ref_sky = 1.e6
        for f in files:
            print f.name, f.fw, f.sky, f.signal
            if (f.sky < ref_sky) and (f.fw > params.reference_min_seeing) and \
               (f.roundness < params.reference_max_roundness) and (f.signal > sigcut) and not(f.name in reference_exclude):
                ref_sky = f.sky
        ref_sky = np.max([ref_sky, params.pixel_max / 1.e5])

        print 'Searching for best-seeing image'
        ref_seeing = 100.0
        for f in files:
            print f.name, f.fw, f.sky, f.signal
            if (f.fw < ref_seeing) and (f.fw > params.reference_min_seeing) and \
               (f.roundness < params.reference_max_roundness) and (f.signal > sigcut) and not(f.name in reference_exclude):
                ref_seeing = f.fw
                best_seeing_ref = f

        ref_list = []
        while len(ref_list) < params.min_ref_images:
            ref_list = []
            print 'Reference FWHM = ', ref_seeing
            print 'Cutoff FWHM for reference = ', params.reference_seeing_factor * ref_seeing
            print 'Cutoff background for reference = ', params.reference_sky_factor * ref_sky
            print 'Combining for reference:'
            for f in files:
                if (f.fw < params.reference_seeing_factor*ref_seeing) and \
                    (f.roundness < params.reference_max_roundness) and (f.sky < params.reference_sky_factor*ref_sky) and \
                    (f.fw > params.reference_min_seeing) and (f.signal > sigcut) and not(f.name in reference_exclude):
                    ref_list.append(f)
                    print f.name, f.fw, f.sky, f.signal
            params.reference_seeing_factor *= 1.02
            params.reference_sky_factor *= 1.02

        if len(ref_list) > params.max_ref_images:
            ref_list = ref_list[:params.max_ref_images]

        sig = []
        for f in ref_list:
            sig.append(f.signal)
        sig = np.asarray(sig)
        sigcut = np.mean(sig) - 2 * np.std(sig)
        print 'signal: mean, std, cut = ', np.mean(sig), np.std(sig), sigcut

        ref_seeing = 1000
        ref_roundness = 2.0
        for f in ref_list:
            if (f.fw < ref_seeing) and (f.signal > sigcut):
                ref_sky = f.sky
                ref_seeing = f.fw
                ref_roundness = f.roundness
                best_seeing_ref = f

    #
    # Which ref image has the worst seeing?
    #
    worst_seeing = 0.0
    for f in ref_list:
        if f.fw > worst_seeing:
            worst_seeing = f.fw
            worst_seeing_ref = f

    if params.ref_image_list:
        with open(params.loc_output + os.path.sep + params.ref_image_list,
                  'w') as fid:
            for f in ref_list:
                fid.write(f.name + '  ' + str(f.fw) + '  ' + str(f.sky) +
                          '  ' + str(f.signal) + '\n')

    #
    # Find the locations of the brightest stars to use as stamp positions
    # if required
    #
    stamp_positions = None
    if params.use_stamps:
        stars = PH.choose_stamps(best_seeing_ref, params)
        stamp_positions = stars[:, 0:2]

    #
    #  Construct the reference image.
    #
    ref = np.zeros([1, 1])
    sum1 = 0
    sum2 = 0

    good_ref_list = []

    for f in ref_list:
        f.blur = IM.boxcar_blur(f.image)
        good_ref_list.append(f)
        print 'difference_image:', f.name, best_seeing_ref.name

    if not (params.use_GPU) and (params.n_parallel > 1):

        #
        # Use ParallelProcessing to process images in the reference list
        #

        pool = Pool(params.n_parallel)
        results = pool.map(
            process_reference_image_helper,
            itertools.izip(
                ref_list,
                itertools.repeat((best_seeing_ref, params, stamp_positions))))

        for i, f in enumerate(ref_list):
            f.result = results[i]

    else:

        for f in ref_list:
            f.result = process_reference_image(
                f, (best_seeing_ref, params, stamp_positions))

    #
    # Remove bad reference models
    #

    rlist = [g for g in good_ref_list]
    for g in rlist:
        if not (isinstance(g.result.diff, np.ndarray)):
            print 'removing', g.name
            good_ref_list.remove(g)

    print 'good reference list:'
    for g in good_ref_list:
        print g.name

    print 'kappa-clipping reference list'
    for iterations in range(5):
        if len(good_ref_list) < 4:
            break
        sd = np.zeros(len(good_ref_list))
        for i, g in enumerate(good_ref_list):
            print g.name, g.result.diff
            sd[i] = np.std(g.result.diff)
        sds = sd.std()
        sdm = sd.mean()
        rlist = [g for g in good_ref_list]
        for g in rlist:
            if np.std(g.result.diff) > (sdm + 2.5 * sds):
                print 'removing', g.name
                good_ref_list.remove(g)

    #
    # Combine the good reference models
    #
    g = good_ref_list[0]
    gstack = np.zeros(
        [len(good_ref_list), g.result.model.shape[0], g.result.model.shape[1]])
    var_ref = np.zeros_like(g.result.model)
    mask = np.ones_like(g.result.model)
    print 'final reference list'
    for i, g in enumerate(good_ref_list):
        if isinstance(g.result.model, np.ndarray):
            print g.name, np.std(g.result.diff), np.median(g.result.model)
            IO.write_image(g.result.model,
                           params.loc_output + os.path.sep + 'mr_' + g.name)
            gstack[i, :, :] = g.result.model
            var_ref += g.result.model / params.gain + (params.readnoise /
                                                       params.gain)**2
            mask *= g.mask
    rr = np.median(gstack, axis=0)
    IO.write_image(rr, params.loc_output + os.path.sep + reference_image)
    IO.write_image(mask,
                   params.loc_output + os.path.sep + 'mask_' + reference_image)
    var_ref /= np.float(len(good_ref_list))
    IO.write_image(var_ref,
                   params.loc_output + os.path.sep + 'var_' + reference_image)
    if params.error_image_prefix is not None:
        IO.write_image(
            np.sqrt(var_ref), params.loc_output + os.path.sep +
            params.error_image_prefix + reference_image)

    for f in ref_list:
        f.result = None

    return stamp_positions
示例#2
0
def imsub_all_fits(params, reference='ref.fits'):

    #
    # Create the output directory if it doesn't exist
    #
    if not (os.path.exists(params.loc_output)):
        os.mkdir(params.loc_output)

    #
    # The degree of spatial shape changes has to be at least as
    # high as the degree of spatial photometric scale
    #
    if (params.sdeg < params.pdeg):
        print 'Increasing params.sdeg to ', params.pdeg
        params.sdeg = params.pdeg

    #
    # Print out the parameters for this run.
    #
    print 'Parameters:'
    for par in dir(params):
        print par, getattr(params, par)
    print

    #
    # Determine our list of images
    #
    all_files = os.listdir(params.loc_data)
    all_files.sort()
    files = []
    for f in all_files:
        print 'file', f
        if fnmatch.fnmatch(f, params.name_pattern):
            g = DS.Observation(params.loc_data + os.path.sep + f, params)
            del g.data
            del g.mask
            print 'fw', g.fw
            if g.fw > 0.0:
                files.append(g)
            print g.name, 'accepted'

    if len(files) < 3:
        print 'Only', len(files), 'files found matching', params.name_pattern
        print 'Exiting'
        sys.exit(0)

    #
    # Have we specified a registration template?
    #
    if params.registration_image:
        reg = DS.Observation(params.registration_image, params)
    else:
        reg = DS.EmptyBase()
        reg.fw = 999.0
        for f in files:
            if (f.fw < reg.fw) and (f.fw > params.reference_min_seeing) and (
                    f.sky < params.registration_max_background):
                reg = f

    print 'Registration image:', reg.name

    #
    # Register images
    #
    print 'Registering images'
    files_copy = [f for f in files]
    for f in files:
        print f.name
        if f == reg:
            f.image = f.data
            rf = params.loc_output + os.path.sep + 'r_' + f.name
            IO.write_image(f.image, rf)
        else:
            if not f.register(reg, params):
                files_copy.remove(f)
            # delete image arrays to save memory
            del f.image
            del f.mask
            del f.inv_variance
        del reg.data
        del reg.image
        del reg.mask
        del reg.inv_variance
    files = files_copy

    #
    # Write image names and dates to a file
    #
    if params.image_list_file:
        try:
            with open(params.loc_output + os.path.sep + params.image_list_file,
                      'w') as fid:
                for f in files:
                    date = None
                    if params.datekey:
                        date = IO.get_date(
                            params.loc_data + os.path.sep + f.name,
                            key=params.datekey) - 2450000
                    if date:
                        fid.write(f.name + '   %10.5f\n' % date)
                    else:
                        fid.write(f.name)
        except:
            raise

    #
    # Make the photometric reference image if we don't have it.
    # Find stamp positions if required.
    #
    if not (os.path.exists(params.loc_output + os.path.sep + reference)):
        print 'Reg = ', reg.name
        stamp_positions = make_reference(files,
                                         reg,
                                         params,
                                         reference_image=reference)
        ref = DS.Observation(params.loc_output + os.path.sep + reference,
                             params)
        mask, _ = IO.read_fits_file(params.loc_output + os.path.sep + 'mask_' +
                                    reference)
        variance, _ = IO.read_fits_file(params.loc_output + os.path.sep +
                                        'var_' + reference)
        ref.mask = mask
        ref.inv_variance = 1.0 / variance
        ref.register(reg, params)
    else:
        ref = DS.Observation(params.loc_output + os.path.sep + reference,
                             params)
        if os.path.exists(params.loc_output + os.path.sep + 'mask_' +
                          reference):
            mask, _ = IO.read_fits_file(params.loc_output + os.path.sep +
                                        'mask_' + reference)
        else:
            mask = np.ones_like(ref.data)
        ref.mask = mask
        ref.register(reg, params)
        stamp_positions = None
        if params.use_stamps:
            stamp_file = params.loc_output + os.path.sep + 'stamp_positions'
            if os.path.exists(stamp_file):
                stamp_positions = np.genfromtxt(stamp_file)
            else:
                stars = PF.choose_stamps(ref, params)
                stamp_positions = stars[:, 0:2]
                np.savetxt(stamp_file, stamp_positions)

    pm = params.pixel_max
    params.pixel_max *= 0.9
    ref.mask *= IM.compute_saturated_pixel_mask(ref.image, params)
    params.pixel_max = pm
    ref.blur = IM.boxcar_blur(ref.image)
    if params.mask_cluster:
        ref.mask *= IM.mask_cluster(ref.image, ref.mask, params)

    #
    # Detect stars and compute the PSF if we are doing photometry
    #
    star_positions = None
    sky = 0.0
    if params.do_photometry:
        star_file = params.loc_output + os.path.sep + 'star_positions'
        psf_file = params.loc_output + os.path.sep + 'psf.fits'
        if not (os.path.exists(psf_file)) or not (os.path.exists(star_file)):
            stars = PH.compute_psf_image(params, ref, psf_image=psf_file)
            star_positions = stars[:, 0:2]
            star_sky = stars[:, 4]
        if os.path.exists(star_file):
            star_positions = np.genfromtxt(star_file)
            star_sky = star_positions[:, 0] * 0.0
        else:
            np.savetxt(star_file, star_positions)

    print 'sky =', sky

    #
    # If we have pre-determined star positions
    #
    if params.star_file:
        stars = np.genfromtxt(params.star_file)
        star_positions = stars[:, 1:3]
        if params.star_reference_image:
            star_ref, h = IO.read_fits_file(params.star_reference_image)
            offset, _, _ = register_translation(star_ref, ref.image, 1000)
            dy, dx = offset
            #dy, dx = IM.positional_shift(ref.image,star_ref)
            print 'position shift =', dx, dy
            star_positions[:, 0] -= dx
            star_positions[:, 1] -= dy
        np.savetxt(star_file, star_positions)

    #
    # If we are using a CPU, group the stars by location
    #
    print 'Group_check'
    print 'params.do_photometry', params.do_photometry
    print 'params.use_GPU', params.use_GPU
    if params.do_photometry:
        star_group_boundaries = None
        detector_mean_positions_x = None
        detector_mean_positions_y = None
        star_unsort_index = None
        star_sort_index,star_group_boundaries,detector_mean_positions_x,detector_mean_positions_y = \
             PH.group_stars_ccd(params,star_positions,params.loc_output+os.path.sep+reference)
        star_positions = star_positions[star_sort_index]
        star_sky = star_sky[star_sort_index]
        star_unsort_index = np.argsort(star_sort_index)

    #
    # Do photometry of the reference image
    #
    if params.do_photometry:
        ref_flux_file = params.loc_output + os.path.sep + 'ref.flux'
        if not (os.path.exists(ref_flux_file)):
            result = difference_image(
                ref,
                ref,
                params,
                stamp_positions=stamp_positions,
                psf_image=psf_file,
                star_positions=star_positions,
                star_group_boundaries=star_group_boundaries,
                detector_mean_positions_x=detector_mean_positions_x,
                detector_mean_positions_y=detector_mean_positions_y,
                star_sky=star_sky)
            if isinstance(result.flux, np.ndarray):
                print 'ungrouping fluxes'
                result.flux = result.flux[star_unsort_index].copy()
                result.dflux = result.dflux[star_unsort_index].copy()
                np.savetxt(ref_flux_file,
                           np.vstack((result.flux, result.dflux)).T)

    #
    # Process images
    #

    if params.make_difference_images:

        if not (params.use_GPU) and (params.n_parallel > 1):

            pool = Pool(params.n_parallel)
            pool.map(
                process_image_helper,
                itertools.izip(
                    files,
                    itertools.repeat(
                        (ref, params, stamp_positions, star_positions,
                         star_group_boundaries, star_unsort_index,
                         detector_mean_positions_x,
                         detector_mean_positions_y))))

        else:

            for f in files:
                process_image(
                    f, (ref, params, stamp_positions, star_positions,
                        star_group_boundaries, star_unsort_index,
                        detector_mean_positions_x, detector_mean_positions_y))

    return files
示例#3
0
def make_diff_images(filenamelist, refim, params):
    """ make a diff image for each file in filenamelist: file - refim.

    filenamelist :  list of filenames for 'target' images
    refim : reference image, either a filename or a DIA Observation object
    params : DIA parameters object
    """
    star_group_boundaries = None
    detector_mean_positions_x = None
    detector_mean_positions_y = None
    star_unsort_index = None
    star_positions = None
    stamp_positions = None
    sky = 0.0

    if isinstance(refim, str) and os.path.exists(refim):
        refim = DS.Observation(refim, params)

    # TODO: investigate what is really being done here:
    #  Apply saturation mask and boxcar blurring to reference image
    mask, _ = IO.read_fits_file(
            params.loc_output + os.path.sep + 'mask_' + refim.name)
    refim.mask = mask
    pm = params.pixel_max
    params.pixel_max *= 0.9
    refim.mask *= IM.compute_saturated_pixel_mask(refim.image, 4, params)
    params.pixel_max = pm
    refim.blur = IM.boxcar_blur(refim.image)
    if params.mask_cluster:
        refim.mask *= IM.mask_cluster(refim.image, refim.mask, params)

    # For each given filename, get a pyDIA observation object
    image_list = get_observation_list(filenamelist, params)

    # Register the images, using the ref image as the registration template,
    # unless the user has specified otherwise
    if not params.registration_image:
        params.registration_image = refim.fullname
    registered_image_list = register_images(image_list, params)

    # make diff images: im - ref
    for im in registered_image_list:
        result = DIA.difference_image(
            refim, im, params,
            stamp_positions=stamp_positions,
            psf_image=params.loc_output + os.path.sep + 'psf.fits',
            star_positions=star_positions,
            star_group_boundaries=star_group_boundaries,
            detector_mean_positions_x=detector_mean_positions_x,
            detector_mean_positions_y=detector_mean_positions_y)
        del im.image
        del im.mask
        del im.inv_variance

        hdr = fits.getheader(im.fullname)
        #  TODO : use astropy fits to propagate header with WCS from parent image
        # Save output images to files
        if isinstance(result.diff, np.ndarray):
            IO.write_image(result.diff,
                           params.loc_output + os.path.sep + 'd_' + im.name,
                           header=hdr)