示例#1
0
def rectify_stitch_stereo_image(image_left, image_right, info_left,
                                info_right):
    cam_left = image_geometry.PinholeCameraModel()
    cam_left.fromCameraInfo(info_left)
    cam_right = image_geometry.PinholeCameraModel()
    cam_right.fromCameraInfo(info_right)

    if len(image_left.shape) > 2 and image_left.shape[2] > 1:
        image_left = grayscale(image_left)
        image_right = grayscale(image_right)

    extra_space = 200
    cam_left.P[0, 2] += extra_space

    warped_image_size = (image_left.shape[0],
                         image_left.shape[1] + extra_space)
    warped_left, left_mapx = rectify_image(cam_left, image_left,
                                           warped_image_size)
    warped_right, right_mapx = rectify_image(cam_right, image_right,
                                             warped_image_size)
    stitched = np.zeros(
        (warped_left.shape[0], warped_left.shape[1] + extra_space))
    non_overlap_pixels = extra_space + 200
    blank_pixels = 200
    overlap_pixels = warped_left.shape[1] - non_overlap_pixels - blank_pixels
    blend_map_linear = np.concatenate(
        (np.ones(non_overlap_pixels),
         np.arange(1, 0,
                   -1.0 / (overlap_pixels + 1))[1:], np.zeros(blank_pixels)))
    stitched[:, :warped_left.shape[1]] = warped_left * blend_map_linear
    stitched[:, -warped_right.shape[1]:] += warped_right * np.flip(
        blend_map_linear, 0)

    stitched = np.asarray(
        stitched, image_left.dtype)  # get the same type out as we put in

    fov = np.zeros((stitched.shape[1]))
    fl = np.linspace(60.6 + 27, -60.6 + 27, image_left.shape[1]).reshape(1, -1)
    fr = np.linspace(60.6 - 27, -60.6 - 27,
                     image_right.shape[1]).reshape(1, -1)
    left_mapx = left_mapx.mean(axis=0)
    right_mapx = right_mapx.mean(axis=0)
    fov_l = cv2.remap(fl, left_mapx, np.zeros_like(left_mapx),
                      cv2.INTER_CUBIC).flatten()
    fov_r = cv2.remap(fr, right_mapx, np.zeros_like(right_mapx),
                      cv2.INTER_CUBIC).flatten()
    fov[:fov_l.size] = fov_l * blend_map_linear
    fov[-fov_r.size:] += fov_r * np.flip(blend_map_linear, 0)

    return stitched, fov
示例#2
0
    def __init__(self):
        rospy.init_node('active_detection')
        self.tf_listener = tf.TransformListener()
        ################ Init Database Services ###############################

        rospy.wait_for_service('/database/requests')
        self.DBQuery_proxy = rospy.ServiceProxy('/database/requests', ObjectDBQuery)

        ################ Init Publishers and Bridge ###########################
        # Image publisher for debugging, publishes images with bounding boxes
        # and labels drawn around detected objects.

        # Debug image for verification
        self.image_pub = rospy.Publisher(
            "/cvod/debug_images", Image, queue_size=1)

        '''
		CVBridge allows us to convert openCV images into ROS msgs and vice versa.
		It is the active link between publishers, subscribers and the operations performed between.
        '''
        self.bridge = CvBridge()

        ################ Init Subscribers #####################################
        # Used to keep track of when we should update PCODAR.
        self.see_frame_counter = 0
        self.left_frame_counter = 0

        # Image subscriber for seecam, these images will be processed by the
        # network.
        self.see_sub = mil_tools.Image_Subscriber(
            topic="/camera/seecam/image_raw", callback=self.callback, image_callback_args="/seecam")

        # Image subscriber for front left camera, these images will be
        # processed by the network.
        self.left_sub = mil_tools.Image_Subscriber(
            topic="/camera/front/left/image_raw", callback=self.callback, image_callback_args="/front_left_cam")

        ################ Get Camera Info ######################################

        			#### Seecam ####
        self.see_camera_info = self.see_sub.wait_for_camera_info()
        self.see_img_geom = image_geometry.PinholeCameraModel()
        self.see_img_geom.fromCameraInfo(self.see_camera_info)

   					#### Front Left ####
        self.left_camera_info = self.left_sub.wait_for_camera_info()
        self.left_img_geom = image_geometry.PinholeCameraModel()
        self.left_img_geom.fromCameraInfo(self.left_camera_info)
示例#3
0
    def __init__(self):
        rospy.init_node("Kid", anonymous=True)

        # attributes for obstacle avoidance
        self.distance = [10.0 for i in range(0,16)]
        self.obstacles = []

        # attributes for pose management and POI robot-centric localization
        self.axisRotationMatrix = self.NO_ROTATION_MATRIX
        self.startOrientation = 0.0
        self.translationVector = self.NO_TRANSLATION_VECTOR
        self.startPoint = Vector2D()
        self.theta = 0.0
        self.rotationMatrix = self.NO_ROTATION_MATRIX
        self.POI = Vector2D()

        # releasers
        self.targetFound = False
        self.avoidReleaser = False
        self.canRead = True
        self.POIFound = False

        # temporal releasers
        self.lastPOIFound = -self.MAX_TIME_ELAPSED
        self.lastPoseUpdateTime = -self.POSE_UPDATE_RATE
        self.lastLookUpdateTime = -self.LOOK_UPDATE_RATE
        self.lastSonarReadTime = -self.SONAR_UPDATE_RATE
        self.lastRandomField = -self.RANDOM_FIELD_RATE

        self.msg = Twist()
        self.inGame = False
        self.colorToTouch = ""
        self.colorTouched = False

        # ROS library needed for image conversion from ROS to OpenCV
        self.bridge = CvBridge()
        # Needed to interpretate images geometrically with camera parameters
        self.camera_model = image_geometry.PinholeCameraModel()

        self.frameRGBD = None
        self.poseInfo = None

        # publishers and subscribers
        self.velPub = rospy.Publisher("/RosAria/cmd_vel", Twist, queue_size=1)
        self.sonarSub = rospy.Subscriber("/RosAria/sonar", PointCloud, self.readSonar)
        self.poseSub = rospy.Subscriber("/RosAria/pose", Odometry, self.updatePose)

        self.RMSpeakerPub = rospy.Publisher("node_to_rolemanager", String, queue_size=10)
        self.RMListenerSub = rospy.Subscriber("rolemanager_to_node", String, self.ownRoleManagerListener)
        # Subscriber for computer vision module
        self.imageSub = message_filters.Subscriber("/camera/rgb/image_rect_color", Image)
        self.depthSub = message_filters.Subscriber("/camera/depth_registered/image", Image)
        self.cameraInfoSub = message_filters.Subscriber("/camera/depth_registered/camera_info", CameraInfo)
        # Topic time synchronizer
        ats = message_filters.ApproximateTimeSynchronizer([self.imageSub,self.depthSub,self.cameraInfoSub], queue_size = 10, slop = 0.1)
        ats.registerCallback(self.RGBDSubscriber)

        # Color target
        self.colorlower = None
        self.colorupper = None
    def __init__(self):
        # ========== TF ======== #
        # TF Listner #
        self.tf_buffer = tf2_ros.Buffer()
        self.tf_listner = tf2_ros.TransformListener(self.tf_buffer)
        # ======== Transform Info ======== #
        self.trans = list()

        # ======== BoundingBox Callback ======== #
        self.bbox_sub = rospy.Subscriber('/clustering_result',
                                         BoundingBoxArray,
                                         self.bbArrayCb,
                                         queue_size=1)

        # ======= Camera Callback ======== #
        self.img_sub = rospy.Subscriber('/kinect_second/hd/image_color', Image,
                                        self.imgCb)
        self.cam_sub = rospy.Subscriber('/kinect_second/hd/camera_info',
                                        CameraInfo, self.camInfoCb)

        self.bridge = CvBridge()
        # ======== Camera Model ======== #
        self.camera_model = image_geometry.PinholeCameraModel()

        # ======== ImageArray Publisher ======== #
        self.img_array_pub = rospy.Publisher('/bbox_cap_img_array',
                                             ImageArray,
                                             queue_size=1)
 def cameraRGBInfoCallback(self, data):
     if self.cameraWidth is None:
         self.cameraWidth = data.width
         self.cameraHeight = data.height
         self.pinholeCamera = image_geometry.PinholeCameraModel()
         self.pinholeCamera.fromCameraInfo(data)
         self.rgbCameraFrame = data.header.frame_id
示例#6
0
 def adjust_fold(self, req):
     #Go to viewing stance
     StanceUtils.call_stance("open_both", 5.0)
     StanceUtils.call_stance("viewing", 5.0)
     last_model = pickle.load(open("/tmp/last_model.pickle"))
     camera_model = image_geometry.PinholeCameraModel()
     info = RosUtils.get_next_message("wide_stereo/left/camera_info",
                                      CameraInfo)
     cam_frame = info.header.frame_id
     camera_model.fromCameraInfo(info)
     now = rospy.Time.now()
     req.start.header.stamp = now
     req.end.header.stamp = now
     self.listener.waitForTransform(cam_frame, req.start.header.frame_id,
                                    now, rospy.Duration(20.0))
     start_cam = self.listener.transformPoint(cam_frame, req.start)
     end_cam = self.listener.transformPoint(cam_frame, req.end)
     start = camera_model.project3dToPixel(
         (start_cam.point.x, start_cam.point.y, start_cam.point.z))
     end = camera_model.project3dToPixel(
         (end_cam.point.x, end_cam.point.y, end_cam.point.z))
     folded_model = Models.Point_Model_Folded(last_model, start, end)
     folded_model.image = None
     folded_model.initial_model.image = None
     pickle.dump(folded_model, open("/tmp/last_model.pickle", 'w'))
     adjust_folded_model = rospy.ServiceProxy(
         "fold_finder_node/process_mono", ProcessMono)
     resp = adjust_folded_model("wide_stereo/left")
     new_start = resp.pts3d[0]
     new_end = resp.pts3d[1]
     return AdjustFoldResponse(start=new_start, end=new_end)
示例#7
0
	def __init__(self):
		cv2.namedWindow('Gesture Detector', cv2.WINDOW_NORMAL)

		cv2.createTrackbar("Lower Hue", 'Gesture Detector', 0, 180, update_mask)
		cv2.createTrackbar("Upper Hue", 'Gesture Detector', 0, 180, update_mask)
		cv2.createTrackbar("Lower Saturation", 'Gesture Detector', 0, 255, update_mask)
		cv2.createTrackbar("Upper Saturation", 'Gesture Detector', 0, 255, update_mask)
		cv2.createTrackbar("Lower Value", 'Gesture Detector', 0, 255, update_mask)
		cv2.createTrackbar("Upper Value", 'Gesture Detector', 0, 255, update_mask)
		#cv2.createTrackbar("Pump Enable", "Camera", 0, 1, nothing)

		#Good default values
		cv2.setTrackbarPos("Lower Hue", 'Gesture Detector', 136)
		cv2.setTrackbarPos("Upper Hue", 'Gesture Detector', 180)
		cv2.setTrackbarPos("Lower Saturation", 'Gesture Detector', 50)
		cv2.setTrackbarPos("Upper Saturation", 'Gesture Detector', 176)
		cv2.setTrackbarPos("Lower Value", 'Gesture Detector', 0)
		cv2.setTrackbarPos("Upper Value", 'Gesture Detector', 135)

		self.bridge = CvBridge()
		self.listener = tf.TransformListener()
		self.kinect_model = image_geometry.PinholeCameraModel()
		
		self.pump_pub = rospy.Publisher('/uarm/pump', Bool, queue_size=10)
		rospy.Subscriber('camera/rgb/camera_info', CameraInfo, self.get_camera_info)
		rospy.Subscriber('/camera/rgb/image_color', Image, self.image_callback)

		self.pump_msg = Bool()
示例#8
0
    def __init__(self):
        rospy.init_node('Kinect', anonymous=True)

        # Subscribers
        self.imageSub = message_filters.Subscriber(
            "/camera/rgb/image_rect_color", Image)
        self.depthSub = message_filters.Subscriber(
            "/camera/depth_registered/image", Image)
        self.cameraInfoSub = message_filters.Subscriber(
            "/camera/depth_registered/camera_info", CameraInfo)
        # Topic time synchronizer
        ats = message_filters.ApproximateTimeSynchronizer(
            [self.imageSub, self.depthSub, self.cameraInfoSub],
            queue_size=10,
            slop=0.1)
        ats.registerCallback(self.imageCapture)

        # ROS library needed for image conversion from ROS to OpenCV
        self.bridge = CvBridge()
        # Needed to interpretate images geometrically with camera parameters
        self.camera_model = image_geometry.PinholeCameraModel()
        # Color init
        lightblue = np.uint8([[[204, 204, 0]]])
        hsv_lightblue = cv2.cvtColor(lightblue, cv2.COLOR_BGR2HSV)
        self.colorlower = np.array([hsv_lightblue[0][0][0] - CONST, 50, 50])
        self.colorupper = np.array([hsv_lightblue[0][0][0] + CONST, 255, 255])
示例#9
0
    def __init__(self, camera_name, rgb_topic, depth_topic, camera_info_topic):

        self.camera_name = camera_name
        self.rgb_topic = rgb_topic
        self.depth_topic = depth_topic
        self.camera_info_topic = camera_info_topic

        self.pose = None

        self.marker_pub = rospy.Publisher('visualization_marker', Marker, queue_size=10)

        # cv2.namedWindow("Image window", cv2.WINDOW_NORMAL)
        # cv2.setMouseCallback("Image window", self.mouse_callback)

        self.br = tf.TransformBroadcaster()

        #Have we recieved camera_info and image yet?
        self.ready_ = False

        self.bridge = CvBridge()

        self.camera_model = image_geometry.PinholeCameraModel()
        rospy.loginfo('Camera {} initialised, {}, , {}'.format(self.camera_name, rgb_topic, depth_topic, camera_info_topic))
        print('')

        q=25

        self.sub_rgb = message_filters.Subscriber(rgb_topic, Image, queue_size=q)
        self.sub_depth = message_filters.Subscriber(depth_topic, Image, queue_size=q)
        self.sub_camera_info = message_filters.Subscriber(camera_info_topic, CameraInfo, queue_size=q)
        # self.tss = message_filters.ApproximateTimeSynchronizer([self.sub_rgb, self.sub_depth, self.sub_camera_info], queue_size=15, slop=0.4)
        self.tss = message_filters.ApproximateTimeSynchronizer([self.sub_rgb, self.sub_depth, self.sub_camera_info], queue_size=30, slop=0.5)
        #self.tss = message_filters.TimeSynchronizer([sub_rgb], 10)

        self.tss.registerCallback(self.callback)
示例#10
0
    def __init__(self):
        rospy.loginfo("Creating Obj3DDetector class")
        
        # flags and vars
        self.ph_model = image_geometry.PinholeCameraModel()
        self.tracked_pixel = Point()
        self.use_kb = False
        self.ball_radius = 0
        self.p_ball_to_cam = []
        self.bridge = CvBridge()
        
        self.tb_val = self.window_with_trackbars('image_red', GREEN_TB_DEFAULTS, GREEN_TB_HIGHS)

        # Get and set params
        self.get_and_set_params()

        # kbhit instance
        self.kb = kbhit.KBHit()
        if self.use_kb:
            self.print_help()
            rospy.on_shutdown(self.kb.set_normal_term)
            self.imwritecounter = 0

        # subscribers
        self.cam_info_sub = rospy.Subscriber("/camera/rgb/camera_info", CameraInfo, self.update_model_cb)
        self.msg_filt_rgb_img_sub = message_filters.Subscriber("/camera/rgb/image_color", Image)
        self.msg_filt_depth_img_sub = message_filters.Subscriber("/camera/depth_registered/hw_registered/image_rect", Image)
        self.t_sync = message_filters.ApproximateTimeSynchronizer([self.msg_filt_rgb_img_sub, self.msg_filt_depth_img_sub], 1, slop = 0.01)
        self.t_sync.registerCallback(self.time_sync_img_cb)

        # publishers and timers
        self.kb_timer = rospy.Timer(rospy.Duration(0.1), self.keycb)
        self.start_time = 0
        self.tf_br = tf.TransformBroadcaster()
示例#11
0
    def __init__(self,
                 topic_rect=params["Camera"]["topic_rect"],
                 topic_info=params["Camera"]["topic_info"]):
        """
		Camera class for updating camera frames, camera information and publising the debug image.
		Params:
			topic_rect: the ROS topic of image_rect
			topic_info: the ROS topic of camera_info
		"""
        rospy.init_node('camera', anonymous=True)

        self.frame_rect = None
        self.debugImage = None
        self.debugImageOK = False
        self.camera_info_msg = None
        self.bridge = CvBridge()
        self.camera_rect = rospy.Subscriber(topic_rect, Image,
                                            self.callback_rect)
        self.debugImagePub = rospy.Publisher("debugImage", Image, queue_size=2)
        self.camera_model = image_geometry.PinholeCameraModel()

        self.setAutoExposure(True)
        self.setAutoFrameRate(True)
        self.changeSubsampling(1)
        time.sleep(0.5)

        self.camera_info = rospy.Subscriber(topic_info, CameraInfo,
                                            self.callback_info)
        rospy.wait_for_message(params["Camera"]["topic_info"], CameraInfo)
        rospy.wait_for_message(params["Camera"]["topic_rect"], Image)
        time.sleep(0.5)

        self.camera_model.fromCameraInfo(self.camera_info_msg)
示例#12
0
    def __init__(self, num_frames, hand_coords):

        # self.pointcloud_sub = message_filters.Subscriber("/depth_registered/points",PointCloud2)
        self.caminfo_sub = message_filters.Subscriber("/camera_info_rgb",
                                                      CameraInfo)
        self.frame_number_sub = message_filters.Subscriber(
            "/frame_number", PointStamped)

        self.sequence_sync = message_filters.ApproximateTimeSynchronizer(
            [self.caminfo_sub, self.frame_number_sub],
            20,
            1,
            allow_headerless=False)
        self.sequence_sync.registerCallback(self.callback)

        self.num_frames = num_frames
        self.hand2d = hand_coords
        self.hand_coords = npy.zeros((self.num_frames, 4, 3))

        self.pixel_width = 10
        self.size_var = 2 * self.pixel_width + 1
        x = npy.zeros((self.size_var, self.size_var))
        x[self.pixel_width, self.pixel_width] = 1.
        self.gf = gfx(x, 2)
        # print(self.gf)

        self.img_geo = ig.PinholeCameraModel()
示例#13
0
    def __init__(self):
        rospy.loginfo('Waiting for camera info')
        self.camera_info = rospy.wait_for_message('camera_info', CameraInfo)
        print('camera_info:\n%s' % self.camera_info)
        self.geometry_camera = image_geometry.PinholeCameraModel()
        self.geometry_camera.fromCameraInfo(self.camera_info)
        self.optical_frame = self.geometry_camera.tf_frame

        self.tf_listener = tf.TransformListener()
        self.image_pub = rospy.Publisher('image_project', Image, queue_size=1)
        self.image_sub = rospy.Subscriber('image_raw',
                                          Image,
                                          self.on_image,
                                          queue_size=1)
        self.points3d_service = rospy.Service('project_points3d',
                                              SetProjectPoints3D,
                                              self.on_project_points3d)
        self.points2d_service = rospy.Service('project_points2d',
                                              SetProjectPoints2D,
                                              self.on_project_points2d)
        self.tf_service = rospy.Service('project_tf', SetProjectTFs,
                                        self.on_project_tfs)

        self.last_cv2_image = None
        self.overlay_image = None
        self.overlay_mask = None
        self.points2d = None
        self.points3d = None
        self.tf = None
示例#14
0
    def __init__(self, parent):
        super(KinectTracker, self).__init__(parent)
        self.name = self.__class__.__name__

        # Ros Stuff
        self.sub_depth = None  #Initialised later
        self.bridge = CvBridge()
        self.pub_depth = rospy.Publisher("/camera/detector/image_raw",
                                         ImageMSG,
                                         queue_size=1)
        self.pub_camera = rospy.Publisher("/camera/detector/camera_info",
                                          CamInfoMSG,
                                          queue_size=1)

        # Parameters
        self.method = None
        self.setMethod(1)
        # Maximum depth we consider
        self.maxDepth = None
        self.setMaxDepth(m=4.5)
        # How far away we need to be from the background to be considered foreground
        self.bg_thresh = None
        self.setForegroundDist(cm=45)
        # Size of kernel for morphalogical operations
        self.kernel = None
        self.setKernel(2)  #x*2+1
        # Number of morphalogical operation iterations
        self.morphIterations = None
        self.setIterations(1)
        # Camera matrix properties #TODO: use numpy and an intrinsic camera matrix to matrix-point multiply
        # FOR NOW USING ROS CAMERA MODEL
        #self.centerX = 319.5
        #self.centerY = 239.5
        #self.depthFocalLength = 525
        # Size restrictions of detected object (metric)
        self.estSize = None
        self.setSize(cm=6)
        self.estSizeTol = None
        self.setSizeTolerance(cm=4)
        self.priority = None  # 0: blob size, 1:pixel coord, 2:x, 3:y, 4:z, 5: object width, 6:difference from background
        self.setPriority(0)
        self.depthEstMode = None
        self.setDepthEstMode(0)

        self.goal = []  # x,y,z in camera frame

        # Background History
        self.acc = None
        self.counterSteps = -1
        self.counter = 0
        #self.resetBackground(3.5)

        # Image buffers
        self.depth = None  # current depth image [float32]
        self.show = None  # image to display and draw on [rgb8]
        self.method = 0  #0 = median, 1 = minimum

        self.cameraModel = image_geometry.PinholeCameraModel()
        self.cameraInfo = None
示例#15
0
def get_pinhole_camera_model(bag_fname, infotopic):
    """ assuming model is static """
    bag = rosbag.Bag(bag_fname, 'r')
    for topic, msg, bts in bag.read_messages(infotopic):
        cam = image_geometry.PinholeCameraModel()
        cam.fromCameraInfo(msg)
        break
    return cam
示例#16
0
 def convert_imgmsg(self, cammsg, caminfomsg):
     cvImg = self.bridge.imgmsg_to_cv2(cammsg,
                                       desired_encoding='passthrough')
     cam_model = image_geometry.PinholeCameraModel()
     cam_model.fromCameraInfo(caminfomsg)
     cam_model.rectifyImage(cvImg, 0)
     cvImg = cv2.remap(cvImg, cam_model.mapx, cam_model.mapy, 1)
     return cvImg, cam_model
示例#17
0
 def setCameraModel(self, msg):
     """ 
      thorvald_001/kinect2_camera/hd/camera_info topic callback Type: CameraInfo
      Used to get camera characteristics for PinHoleCameraModel then unsubscribes as not needed once values 
      have been set.
     """
     self.camera_model = image_geometry.PinholeCameraModel()
     self.camera_model.fromCameraInfo(msg)
     self.camera_info_sub.unregister()
示例#18
0
    def image_cb(self, image):
        '''Hang on to last image'''
        self.last_image = image
        self.last_image_time = self.image_sub.last_image_time
        if self.camera_model is None:
            if self.image_sub.camera_info is None:
                return

            self.camera_model = image_geometry.PinholeCameraModel()
            self.camera_model.fromCameraInfo(self.image_sub.camera_info)
示例#19
0
 def __init__(self):
     self.bridge = CvBridge()
     self.listener = tf.TransformListener()
     self.tf2Buffer = tf2_ros.Buffer()
     self.tf2listener = tf2_ros.TransformListener(self.tf2Buffer)
     self.br = tf.TransformBroadcaster()
     self.camera_info = rospy.wait_for_message(
         '/thorvald_002/kinect2_camera/hd/camera_info', CameraInfo)
     self.camera_model = image_geometry.PinholeCameraModel()
     self.camera_model.fromCameraInfo(self.camera_info)
示例#20
0
 def __init__(self):
     self.bridge = CvBridge()
     self.listener = tf.TransformListener()
     self.tf2Buffer = tf2_ros.Buffer()
     self.tf2listener = tf2_ros.TransformListener(self.tf2Buffer)
     self.image_pub = rospy.Publisher("only_weeds_image",Image, queue_size=10)
     self.pose_pub = rospy.Publisher('weed_to_kill', PoseStamped, queue_size=1)
     self.br = tf.TransformBroadcaster()
     self.camera_info = rospy.wait_for_message('/thorvald_001/kinect2_camera/hd/camera_info', CameraInfo)
     self.camera_model = image_geometry.PinholeCameraModel()
     self.camera_model.fromCameraInfo(self.camera_info)
    def __init__(self):
        grid_spacing = rospy.get_param('~grid_spacing')

        self.bridge = CvBridge()

        rospy.loginfo("Waiting for projector info service...")
        rospy.wait_for_service('projector/get_projector_info')
        rospy.loginfo("Projector info service found.")
        projector_info_service = rospy.ServiceProxy(
            'projector/get_projector_info', projector.srv.GetProjectorInfo)

        rospy.loginfo("Waiting for projection setting service...")
        rospy.wait_for_service('projector/set_projection')
        rospy.loginfo("Projection setting service found.")
        self.set_projection = rospy.ServiceProxy('projector/set_projection',
                                                 projector.srv.SetProjection)

        projector_info = projector_info_service().projector_info
        projector_model = image_geometry.PinholeCameraModel()
        projector_model.fromCameraInfo(projector_info)

        # Generate grid projections
        self.original_projection = cv.CreateMat(projector_info.height,
                                                projector_info.width,
                                                cv.CV_8UC1)
        for row in range(0, projector_info.height, grid_spacing):
            cv.Line(self.original_projection, (0, row),
                    (projector_info.width - 1, row), 255)
        for col in range(0, projector_info.width, grid_spacing):
            cv.Line(self.original_projection, (col, 0),
                    (col, projector_info.height - 1), 255)

        predistortmap_x = cv.CreateMat(projector_info.height,
                                       projector_info.width, cv.CV_32FC1)
        predistortmap_y = cv.CreateMat(projector_info.height,
                                       projector_info.width, cv.CV_32FC1)
        InitPredistortMap(projector_model.intrinsicMatrix(),
                          projector_model.distortionCoeffs(), predistortmap_x,
                          predistortmap_y)

        self.predistorted_projection = cv.CreateMat(projector_info.height,
                                                    projector_info.width,
                                                    cv.CV_8UC1)
        cv.Remap(self.original_projection,
                 self.predistorted_projection,
                 predistortmap_x,
                 predistortmap_y,
                 flags=cv.CV_INTER_NN + cv.CV_WARP_FILL_OUTLIERS,
                 fillval=(0, 0, 0, 0))

        self.off_projection = cv.CreateMat(projector_info.height,
                                           projector_info.width, cv.CV_8UC1)
        cv.SetZero(self.off_projection)
示例#22
0
    def __init__(self):

        self.base_link = 'base_link'
        self.ee_link = 'ee_link'
        flag, self.tree = kdl_parser.treeFromParam('/robot_description')
        self.chain = self.tree.getChain(self.base_link, self.ee_link)
        self.num_joints = self.tree.getNrOfJoints()
        self.vel_ik_solver = kdl.ChainIkSolverVel_pinv(self.chain)
        self.pos_fk_solver = kdl.ChainFkSolverPos_recursive(self.chain)
        self.pos_ik_solver = kdl.ChainIkSolverPos_LMA(self.chain)

        self.cam_model = image_geometry.PinholeCameraModel()

        self.joint_state = kdl.JntArrayVel(self.num_joints)
        self.joint_names = [
            'shoulder_pan_joint', 'shoulder_lift_joint', 'elbow_joint',
            'wrist_1_joint', 'wrist_2_joint', 'wrist_3_joint'
        ]

        rospy.init_node('ur_eef_vel_controller')
        rospy.Subscriber('/joint_states', JointState, self.arm_joint_state_cb)
        rospy.Subscriber('/rdda_interface/joint_states', JointState,
                         self.finger_joint_state_cb)
        self.joint_vel_cmd_pub = rospy.Publisher(
            '/joint_group_vel_controller/command',
            Float64MultiArray,
            queue_size=10)
        self.joint_pos_cmd_pub = rospy.Publisher(
            '/scaled_pos_traj_controller/command',
            JointTrajectory,
            queue_size=10)
        self.speed_scaling_pub = rospy.Publisher('/speed_scaling_factor',
                                                 Float64,
                                                 queue_size=10)

        self.switch_controller_cli = rospy.ServiceProxy(
            '/controller_manager/switch_controller', SwitchController)
        self.joint_pos_cli = actionlib.SimpleActionClient(
            '/scaled_pos_joint_traj_controller/follow_joint_trajectory',
            FollowJointTrajectoryAction)

        cam_info = rospy.wait_for_message('/camera/depth/camera_info',
                                          CameraInfo,
                                          timeout=10)
        self.cam_model.fromCameraInfo(cam_info)

        self.bridge = CvBridge()  # allows conversion from depth image to array
        self.tf_listener = tf.TransformListener()
        self.image_offset = 100
        self.pos_ctrler_running = False
        rospy.sleep(0.5)
示例#23
0
def info2cvmat(info):
  ''' 
    converts a ros CameraInfo msg to cv mats 
    return: (cameraMatrix, distCoeffs, projectionMatrix, rotationMatrix)
  '''
  phc = image_geometry.PinholeCameraModel();
  phc.fromCameraInfo(info);

  cameraMatrix = phc.intrinsicMatrix();
  distCoeffs = phc.distortionCoeffs();
  projectionMatrix = phc.projectionMatrix();
  rotationMatrix = phc.rotationMatrix();

  return (cameraMatrix, distCoeffs, projectionMatrix, rotationMatrix); 
示例#24
0
    def image_cb(self, image):
        '''Hang on to last image'''
        self.last_image = image
        self.last_image_time = self.image_sub.last_image_time
        if self.camera_model is None:
            if self.image_sub.camera_info is None:
                return

            self.camera_model = image_geometry.PinholeCameraModel()
            self.camera_model.fromCameraInfo(self.image_sub.camera_info)
            self.ppf = ProjectionParticleFilter(self.camera_model,
                                                max_Z=15,
                                                salting=0.05,
                                                jitter_prob=0)
    def __init__(self):
        self.printed_chessboard_corners_x = rospy.get_param(
            '~printed_chessboard_corners_x')
        self.printed_chessboard_corners_y = rospy.get_param(
            '~printed_chessboard_corners_y')
        self.printed_chessboard_spacing = rospy.get_param(
            '~printed_chessboard_spacing')

        self.bridge = CvBridge()
        self.mutex = threading.RLock()
        self.image_update_flag = threading.Event()

        rospy.Subscriber("image_stream", sensor_msgs.msg.Image,
                         self.update_image)
        rospy.loginfo("Waiting for camera info...")
        self.camera_info = rospy.wait_for_message('camera_info',
                                                  sensor_msgs.msg.CameraInfo)
        rospy.loginfo("Camera info received.")

        rospy.loginfo("Waiting for projector info service...")
        rospy.wait_for_service('get_projector_info')
        rospy.loginfo("Projector info service found.")
        projector_info_service = rospy.ServiceProxy(
            'get_projector_info', projector.srv.GetProjectorInfo)

        rospy.loginfo("Waiting for projection setting service...")
        rospy.wait_for_service('set_projection')
        rospy.loginfo("Projection setting service found.")
        self.set_projection = rospy.ServiceProxy('set_projection',
                                                 projector.srv.SetProjection)

        rospy.loginfo("Waiting for projector info setting service...")
        rospy.wait_for_service('set_projector_info')
        rospy.loginfo("Projection setting service found.")
        self.set_projector_info = rospy.ServiceProxy(
            'set_projector_info', sensor_msgs.srv.SetCameraInfo)

        self.camera_model = image_geometry.PinholeCameraModel()
        self.camera_model.fromCameraInfo(self.camera_info)
        self.projector_info = projector_info_service().projector_info

        self.blank_projection = cv.CreateMat(self.projector_info.height,
                                             self.projector_info.width,
                                             cv.CV_8UC1)
        cv.SetZero(self.blank_projection)

        self.number_of_scenes = 0
        self.object_points = []
        self.image_points = []
示例#26
0
def find_object(r,g,b):



   	imgdata=rospy.wait_for_message('camera/image_raw',Image)
	if(imgdata is None):
		print "error reciving image from camera"
		return
	bridge = CvBridge()
	image = bridge.imgmsg_to_cv2(imgdata,"bgr8")
    	camInfodata=rospy.wait_for_message('camera/camera_info',CameraInfo)
	if(camInfodata is None):
		print "error reciving caminfo"
		return
	camInfo=camInfodata
    	scannerdata=rospy.wait_for_message('scan',LaserScan)
	if(scannerdata is None):
		print "error getting scanner data"
		return
	distances=scannerdata
	if(camInfo!=0 and distances!=0 and len(image)!=0):
		camera = image_geometry.PinholeCameraModel()
		camera.fromCameraInfo(camInfo)
		Radius_center=(0,0)
	        Radius_center = findCenter(image,r,g,b)
		if(Radius_center==None):
			print "OBJECT NOT FOUND!"
			msg = Float32()
			#print "hereee"
			msg.data =-1.0
			#pub.publish(msg)
			return  None
		else:
			ray = camera.projectPixelTo3dRay(camera.rectifyPoint(Radius_center))
			#print("x = "+str(ray[0])+" y= "+str(ray[1])+" z= "+str(ray[2])+")")
			alpha = np.dot(ray[0],ray[2])
			#print("alpha:"+str(math.degrees(alpha)))
			if(alpha < 0):
				alpha = -alpha
			else:
				alpha = math.floor(math.pi * 2 - alpha)
			#print "min"+str(distances.angle_min)
			#print  "increment"+str(distances.angle_increment)
		 	distance_index = int((alpha - distances.angle_min) / distances.angle_increment)
			#print "index"+str(distance_index)
			actual_distance = distances.ranges[distance_index]
			#print actual_distance
			print "the distance to the object is "+str(actual_distance)
			return actual_distance
    def __init__(self, filename=None):
        if filename is None:
            return

        self.filename = filename

        with open(self.filename, 'rb') as f:
            support_surface = pickle.load(f)
            assert(isinstance(support_surface, support_surface_object.SupportSurface))

            self.image = support_surface.image
            self.depth = support_surface.depth
            self.camera = image_geometry.PinholeCameraModel()
            self.camera.fromCameraInfo(support_surface.camera_info)
            self.surface_normal = np.array(support_surface.surface_normal)
示例#28
0
    def __init__(self):

        # A generalised Pinhole camera model provided by the image_geometry module in ROS. Used as an approximate model
        # of the drone camera. Should be modified with correct camera parameters before usage.
        self.drone_camera = ig.PinholeCameraModel()

        # A buffer which is then used for the TransformListener provided by the ROS tf2 library.  Used to queue up
        # static 3-D coordinates of objects and dynamic 3-D coordinates of the drone. Can be used to transform object
        # coordinates to the drone's frame of reference
        self.tfBuffer = tf2_ros.Buffer()
        self.listener = tf2_ros.TransformListener(self.tfBuffer)
        self.transformer = tf.TransformerROS()

        # A bridging library used to transform ROS images to OpenCV images
        self.bridge = CvBridge()
示例#29
0
def find_object(r, g, b):

    print "find object"
    imgdata = rospy.wait_for_message('camera/image_raw', Image)
    if (imgdata is None):
        print "error reciving image from camera"
        return None, None
    bridge = CvBridge()
    image = bridge.imgmsg_to_cv2(imgdata, "bgr8")
    print "we have image :)"
    camInfodata = rospy.wait_for_message('camera/camera_info', CameraInfo)
    if (camInfodata is None):
        print "error reciving caminfo"
        return None, None
    camInfo = camInfodata
    print "camInfo:" + str(camInfo.K[0]) + str(camInfo.K[1]) + str(
        camInfo.K[2])
    scannerdata = rospy.wait_for_message('scan', LaserScan)
    if (scannerdata is None):
        print "error getting scanner data"
        return None, None
    distances = scannerdata
    if (camInfo != 0 and distances != 0 and len(image) != 0):
        camera = image_geometry.PinholeCameraModel()
        camera.fromCameraInfo(camInfo)

        Radius_center = (0, 0)
        Radius_center = findCenter(image, r, g, b)
        if (Radius_center == None):
            print "OBJECT NOT FOUND!"
            msg = Float32()
            msg.data = -1.0
            return None, None
        else:
            ray = camera.projectPixelTo3dRay(
                camera.rectifyPoint(Radius_center))
            alpha = np.dot(ray[0], ray[2])
            if (alpha < 0):
                alpha = -alpha
            else:
                alpha = math.floor(math.pi * 2 - alpha)
            distance_index = int(
                (alpha - distances.angle_min) / distances.angle_increment)
            actual_distance = distances.ranges[distance_index]
            print "the distance to the object is " + str(actual_distance)
            return actual_distance, alpha
	def __init__(self,num_frames, hand_coords, FILE_DIR):

		self.FILE_DIR = FILE_DIR
		self.caminfo_sub = message_filters.Subscriber("/camera_info_rgb",CameraInfo)
		self.frame_number_sub = message_filters.Subscriber("/frame_number",PointStamped)
		self.depth_image_sub = message_filters.Subscriber("/depth_image",Image)
		self.sequence_sync = message_filters.ApproximateTimeSynchronizer([self.caminfo_sub,self.frame_number_sub,self.depth_image_sub],20,1,allow_headerless=False)
		self.sequence_sync.registerCallback(self.callback)

		self.num_frames = num_frames
		self.hand2d = hand_coords
		self.hand_coords = npy.zeros((self.num_frames,4,3))
	
		self.pixel_width = 0
		self.size_var = 2*self.pixel_width+1
		self.img_geo = ig.PinholeCameraModel()
		self.bridge = CvBridge()